Pesquisa de referências

A Heavy-Tailed and Overdispersed Collective Risk Model

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20220023726</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20220915131320.0</controlfield>
    <controlfield tag="008">220915e20220912esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20220008228</subfield>
      <subfield code="a">Chiroque-Solano, Pamela M.</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">A Heavy-Tailed and Overdispersed Collective Risk Model</subfield>
      <subfield code="c">Pamela M. Chiroque-Solano</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Insurance data can be asymmetric with heavy tails, causing inadequate adjustments of the usually applied models. To deal with this issue, a hierarchical model for collective risk with heavy tails of the claims distributions that also takes into account overdispersion of the number of claims is proposed. In particular, the distribution of the logarithm of the aggregate value of claims is assumed to follow a Student t distribution. Additionally, to incorporate possible overdispersion, the number of claims is modeled as having a negative binomial distribution. Bayesian decision theory is invoked to calculate the fair premium based on the modified absolute deviation utility. An application to a health insurance data set is presented together with some diagnostic measures to identify excess variability. The variability measures are analyzed using the marginal posterior predictive distribution of the premiums according to some competitive models. Finally, a simulation study is carried out to assess the predictive capability of the model and the adequacy of the Bayesian estimation procedure.

</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080578848</subfield>
      <subfield code="a">Análisis de datos</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000239</subfield>
      <subfield code="g">12/09/2022 Tomo 26 Número 3 - 2022 , P. 323-335</subfield>
      <subfield code="x">1092-0277</subfield>
      <subfield code="t">North American actuarial journal</subfield>
      <subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
    </datafield>
  </record>
</collection>