Modelling maximum cyber incident losses of German organisations
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20230012390</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20231214132325.0</controlfield>
<controlfield tag="008">230612e20230403esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">861</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20230005224</subfield>
<subfield code="a">Skarczinski, Bennet von</subfield>
</datafield>
<datafield tag="245" ind1="0" ind2="0">
<subfield code="a">Modelling maximum cyber incident losses of German organisations</subfield>
<subfield code="c">Bennet von Skarczinski, Mathias Raschke, Frank Teuteberg</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">In this paper, we introduce a novel tempered' generalised extreme value (GEV) approach. Based on a stratified random sample of 5000 interviewed German organisations, we model different loss distributions and compare them to our empirical data using graphical analysis and goodness-of-fit tests. We differentiate various subsamples (industry, size, attack type, loss type) and find our modified GEV outperforms other distributions, such as the lognormal and Weibull distributions. Finally, we calculate losses for the German economy, present application examples, derive implications as well as discuss the comparison of loss estimates in the literature </subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20140022700</subfield>
<subfield code="a">Ciberseguridad</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080570651</subfield>
<subfield code="a">Siniestralidad</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080618919</subfield>
<subfield code="a">Análisis de siniestralidad</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080548575</subfield>
<subfield code="a">Pérdidas</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080622251</subfield>
<subfield code="a">Seguridad de la información</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20210003882</subfield>
<subfield code="a">Secuestro de datos</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20230005231</subfield>
<subfield code="a">Raschke, Mathias</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20230005248</subfield>
<subfield code="a">Teuteberg, Frank</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077100215</subfield>
<subfield code="g">03/04/2023 Volumen 48 Número 2 - abril 2023 , p. 463-501</subfield>
<subfield code="x">1018-5895</subfield>
<subfield code="t">Geneva papers on risk and insurance : issues and practice</subfield>
<subfield code="d">Geneva : The Geneva Association, 1976-</subfield>
</datafield>
<datafield tag="856" ind1="0" ind2="0">
<subfield code="y">MÁS INFORMACIÓN</subfield>
<subfield code="u">
mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A
</subfield>
</datafield>
</record>
</collection>