Age-coherent mortality modeling and forecasting using a constrained sparse vector-autoregressive model
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20230012512</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20231214134316.0</controlfield>
<controlfield tag="008">230613e20221205usa|||p |0|||b|eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="0">MAPA20210003059</subfield>
<subfield code="a">Chang, Le </subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Age-coherent mortality modeling and forecasting using a constrained sparse vector-autoregressive model</subfield>
<subfield code="c">Le Chang & Yanlin Shi</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">Accurate forecasts and analyses of mortality rates are essential to many practical issues, such as population projections and the design of pension schemes. Recent studies have considered a spatialtemporal autoregressive (STAR) model, in which the mortality rates of each age depend on their own historical values (temporality) and the neighboring cohort ages (spatiality). Despite the realization of age coherence and improved forecasting accuracy over the famous Lee-Carter (LC) model, the assumption of STAR that only the effects of the same and the neighboring cohorts exist can be too restrictive. In this study, we adopt a datadriven principle, as in a sparse vector autoregressive (SVAR) model, to improve the flexibility of the parametric structure of STAR and develop a constrained SVAR (CSVAR) model. To solve its objective function consisting of non-standard L2 and L1 penalties subject to constraints, we develop a new algorithm and prove the existence of the desirable age-coherence in CSVAR</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080555306</subfield>
<subfield code="a">Mortalidad</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080578848</subfield>
<subfield code="a">Análisis de datos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20200017172</subfield>
<subfield code="a">Análisis vectorial</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20210003066</subfield>
<subfield code="a">Shi, Yanlin </subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000239</subfield>
<subfield code="g">05/12/2022 Tomo 26 Número 4 - 2022 , p. 591-609</subfield>
<subfield code="x">1092-0277</subfield>
<subfield code="t">North American actuarial journal</subfield>
<subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
</datafield>
<datafield tag="856" ind1="0" ind2="0">
<subfield code="y">MÁS INFORMACIÓN</subfield>
<subfield code="u">
mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A
</subfield>
</datafield>
</record>
</collection>