Pesquisa de referências

North American Actuarial Journal. June 2023

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<rdf:Description>
<dc:date>2023-06-08</dc:date>
<dc:identifier>https://documentacion.fundacionmapfre.org/documentacion/publico/es/bib/183453.do</dc:identifier>
<dc:language>spa</dc:language>
<dc:rights xml:lang="es">InC - http://rightsstatements.org/vocab/InC/1.0/</dc:rights>
<dc:subject xml:lang="es">Cálculo actuarial</dc:subject>
<dc:subject xml:lang="es">Modelos actuariales</dc:subject>
<dc:subject xml:lang="es">Mercado de seguros</dc:subject>
<dc:subject xml:lang="es">Seguro de vida</dc:subject>
<dc:subject xml:lang="es">Análisis de riesgos</dc:subject>
<dc:subject xml:lang="es">Seguro de automóviles</dc:subject>
<dc:subject xml:lang="es">Seguro de daños patrimoniales</dc:subject>
<dc:type xml:lang="es">Artículos y capítulos</dc:type>
<dc:title xml:lang="es">North American Actuarial Journal. June 2023</dc:title>
<dc:relation xml:lang="es">En: North American actuarial journal. - Schaumburg : Society of Actuaries, 1997- = ISSN 1092-0277. - 08/06/2023 Tomo 27 Número 2 - 2023 , 228 p.</dc:relation>
<dc:description xml:lang="es">Bivariate mixed poisson regression models with varying dispersion -- Shared savings model risk in the MSSP program -- Smoothed quantiles for measuring discrete risks -- Optimal portfolio choice with health-contingent income products: the value of life care annuit -- Pay-As-You-Drive Insurance: Modeling and Implications -- Products and Strategies for the Decumulation of Wealth during Retirement: Insights from the Literature -- Price Subsidies and the Demand for Automobile Insurance -- Estimating Spillover Effects in Property and Casualty Insurance Consumption -- A Two-Part Beta Regression Approach for Modeling Surrenders and Withdrawals in a Life Insurance Portfolio -- Mixture Composite Regression Models with Multi-type Feature Selection</dc:description>
</rdf:Description>
</rdf:RDF>