Two-dimensional forward and backward transition rates
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20240013516</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20240830115708.0</controlfield>
<controlfield tag="008">240830e20240815che|||p |0|||b|eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">341</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20240021030</subfield>
<subfield code="a">Bathke, Theis </subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Two-dimensional forward and backward transition rates</subfield>
<subfield code="c">Theis Bathke & Marcus C. Christiansen</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">Forward transition rates were originally introduced with the aim to evaluate life insurance liabilities market-consistently. While this idea turned out to have its limitations, recent literature repurposes forward transition rates as a tool for avoiding Markov assumptions in the calculation of life insurance reserves. While life insurance reserves are some form of conditional first-order moments, the calculation of conditional second-order moments needs an extension of the forward transition rate concept from one dimension to two dimensions. Two-dimensional forward transition rates are also needed for the calculation of path-dependent life insurance cash-flows as they occur upon contract modifications. Forward transition rates are designed for doing prospective calculations, and by a time-symmetric definition of so-called backward transition rates one can do retrospective calculations</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080570590</subfield>
<subfield code="a">Seguro de vida</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080555306</subfield>
<subfield code="a">Mortalidad</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080584290</subfield>
<subfield code="a">Contrato de seguro</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20130002446</subfield>
<subfield code="a">Christiansen, Marcus C.</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20220007085</subfield>
<subfield code="g">15/08/2024 Volumen 14 - Número 2 - agosto 2024 , p.41-436</subfield>
<subfield code="t">European Actuarial Journal</subfield>
<subfield code="d">Cham, Switzerland : Springer Nature Switzerland AG, 2021-2022</subfield>
</datafield>
<datafield tag="856" ind1=" " ind2=" ">
<subfield code="u">https://link.springer.com/article/10.1007/s13385-023-00363-3</subfield>
</datafield>
</record>
</collection>