Pesquisa de referências

Multivariate Lévy-type drift change detection and mortality modeling

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20240013639</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20240830135110.0</controlfield>
    <controlfield tag="008">240830e20240415che|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20240021146</subfield>
      <subfield code="a">Krawiec, Michal </subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Multivariate Lévy-type drift change detection and mortality modeling</subfield>
      <subfield code="c">Michal Krawiec and Zbigniew Palmowski</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">In this paper we give a solution to the quickest drift change detection problem for a multivariate Lévy process consisting of both continuous (Gaussian) and jump components in the Bayesian approach. We do it for a general 0-modified continuous prior distribution of the change point as well as for a random post-change drift parameter. Classically, our criterion of optimality is based on a probability of false alarm and an expected delay of the detection, which is then reformulated in terms of a posterior probability of the change point. We find a generator of the posterior probability, which in case of general prior distribution is inhomogeneous in time</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080555306</subfield>
      <subfield code="a">Mortalidad</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080563448</subfield>
      <subfield code="a">Modelización</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080545338</subfield>
      <subfield code="a">Seguros</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20210032660</subfield>
      <subfield code="a">Palmowski, Zbigniew</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20220007085</subfield>
      <subfield code="g">15/04/2024 Volúmen 14 - Número 1 - abril 2024 , p. 175-203</subfield>
      <subfield code="t">European Actuarial Journal</subfield>
      <subfield code="d">Cham, Switzerland  : Springer Nature Switzerland AG,  2021-2022</subfield>
    </datafield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="u">https://link.springer.com/article/10.1007/s13385-023-00350-8</subfield>
    </datafield>
  </record>
</collection>