Pesquisa de referências

A General family of bivariate mixed Poisson distributions

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cam a2200000 i 4500</leader>
    <controlfield tag="001">MAP20070033641</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20090422154813.0</controlfield>
    <controlfield tag="008">000517s2000    bel            000|0eng  </controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20080058753</subfield>
      <subfield code="a">Walhin, J.F.</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">A General family of bivariate mixed Poisson distributions</subfield>
      <subfield code="c">J.F. Walhin and J. Paris</subfield>
    </datafield>
    <datafield tag="260" ind1=" " ind2=" ">
      <subfield code="a">Louvain-La-Neuve</subfield>
      <subfield code="b">Institut de Statistique</subfield>
      <subfield code="c">2000</subfield>
    </datafield>
    <datafield tag="300" ind1=" " ind2=" ">
      <subfield code="a">20 p. </subfield>
      <subfield code="c">24 cm.</subfield>
    </datafield>
    <datafield tag="490" ind1="1" ind2=" ">
      <subfield code="a">Discussion paper</subfield>
      <subfield code="v">11</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">In this paper we study a class of bivariate mixed Poisson distributions by extending the Hofmann's distribution from the univariate case to the bivariate case. We show how to evaluate the bivariate aggregate claims distribution and we adjust some insurance portfolio's given in the literature</subfield>
    </datafield>
    <datafield tag="650" ind1="1" ind2="1">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="650" ind1="1" ind2="1">
      <subfield code="0">MAPA20080597665</subfield>
      <subfield code="a">Métodos estadísticos</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20080006532</subfield>
      <subfield code="a">Paris, J.</subfield>
    </datafield>
    <datafield tag="710" ind1="2" ind2=" ">
      <subfield code="0">MAPA20080446406</subfield>
      <subfield code="a">Institut de Statistique</subfield>
    </datafield>
    <datafield tag="830" ind1=" " ind2="0">
      <subfield code="0">MAPA20080509613</subfield>
      <subfield code="v">11</subfield>
      <subfield code="a">IZA Discussion paper</subfield>
    </datafield>
  </record>
</collection>