Solid fire extinguishment by a water spray
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000nab a2200000 i 4500</leader>
<controlfield tag="001">MAP20071500204</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20080418122249.0</controlfield>
<controlfield tag="007">hzrazu---bucu</controlfield>
<controlfield tag="008">990302e19990301gbr|||| | |00010|eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">813.2</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Solid fire extinguishment by a water spray</subfield>
<subfield code="c">V. Novozhilov... [et al.]</subfield>
</datafield>
<datafield tag="520" ind1="8" ind2=" ">
<subfield code="a">Heat and mass transfer between a water spray and a burning solid surface is considered in application to the fire extinghishment problem. The study combines analytical and computational fluid dynamics (CFD) approaches. In this study extinguishment is considered as a nonexistence of a steady-state burning regime. An analytical one-dimensional burning model of the solid phase is employed, which connects the temperature gradient in the solid with the burning rate. In order to get the critical boundary between the burning and extinction regimes the dependence of flame-to-surface heat feedback on the burning rate is determined using CFD fire simulations. The results are presented as a critical water flow rate required for extinguishment. Different types of burning materials are considered and the results are compared with the available experimental data</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="0">MAPA20080620424</subfield>
<subfield code="a">Seguridad contra incendios</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="0">MAPA20080606220</subfield>
<subfield code="a">Extinción de incendios</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="0">MAPA20080603984</subfield>
<subfield code="a">Sistemas de extinción</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="0">MAPA20080608415</subfield>
<subfield code="a">Rociadores automáticos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="0">MAPA20080578305</subfield>
<subfield code="a">Sistemas de agua</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="0">MAPA20080583460</subfield>
<subfield code="a">Aguas pulverizadas</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="0">MAPA20080591960</subfield>
<subfield code="a">Métodos de análisis</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20080110369</subfield>
<subfield code="a">Novozhilov, V.</subfield>
</datafield>
<datafield tag="710" ind1="2" ind2=" ">
<subfield code="0">MAPA20080470104</subfield>
<subfield code="a">International Association for Fire Safety Science</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="d">Oxford : Elsevier Science</subfield>
<subfield code="t">Fire Safety Journal : the official journal of the International Association for Fire Safety Science</subfield>
<subfield code="g">Vol. 32 nº 2, March 1999 ; p. 119-135</subfield>
</datafield>
</record>
</collection>