Quantification of variability and uncertainty using mixture distributions : evaluation of sample size, mixing weights, and separation between components
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000nab a2200000 i 4500</leader>
<controlfield tag="001">MAP20071505786</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20080418124824.0</controlfield>
<controlfield tag="007">hzruuu---uuuu</controlfield>
<controlfield tag="008">040923e20040601usa|||| | |00010|eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">937.4</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20080059798</subfield>
<subfield code="a">Zheng, Junyu</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Quantification of variability and uncertainty using mixture distributions</subfield>
<subfield code="b">: evaluation of sample size, mixing weights, and separation between components</subfield>
<subfield code="c">Junyu Zheng, H. Christopher Frey</subfield>
</datafield>
<datafield tag="520" ind1="8" ind2=" ">
<subfield code="a">Probabilistic methods are being developed to quantitatively describe both variability and uncertainty. In this article the approach for using mixture distributions and bootstrap simulation is illustrated with a case study of an empirical data set. This article focuses on mixture long-normal distributions with two components since a log- normal distribution describes random variability resulting from multiplicative processes and often well describes the concentration of a chemical in the environment</subfield>
</datafield>
<datafield tag="650" ind1="0" ind2="1">
<subfield code="0">MAPA20080597665</subfield>
<subfield code="a">Métodos estadísticos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="0">MAPA20080559373</subfield>
<subfield code="a">Matemáticas</subfield>
</datafield>
<datafield tag="650" ind1="1" ind2="1">
<subfield code="0">MAPA20080616106</subfield>
<subfield code="a">Cálculo de probabilidades</subfield>
</datafield>
<datafield tag="650" ind1="1" ind2="1">
<subfield code="0">MAPA20080597177</subfield>
<subfield code="a">Ingeniería ambiental</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20080263621</subfield>
<subfield code="a">Frey, Christopher H.</subfield>
</datafield>
<datafield tag="740" ind1="0" ind2=" ">
<subfield code="a">Risk analysis : an international journal</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000345</subfield>
<subfield code="t">Risk analysis : an international journal</subfield>
<subfield code="d">New York and London</subfield>
<subfield code="g">nº 3, June 2004 ; p. 553-571</subfield>
</datafield>
</record>
</collection>