Pesquisa de referências
Atrás

EM estimation for bivariate mixed poisson INAR(1) claim count regression models with correlated random effects

Acceso al documento/Access the document
Seção: Artigos
Título: EM estimation for bivariate mixed poisson INAR(1) claim count regression models with correlated random effects / Zezhun Chen, Angelos Dassios and George TzougasAutor: Chen, Zezhun
Notas: Sumario: This article considers bivariate mixed Poisson INAR(1) regression models with correlated random effects for modelling correlations of different signs and magnitude among time series of different types of claim counts. This is the first time that the proposed family of INAR(1) models is used in a statistical or actuarial context. For expository purposes, the bivariate mixed Poisson INAR(1) claim count regression models with correlated Lognormal and Gamma random effects paired via a Gaussian copula are presented as competitive alternatives to the classical bivariate Negative Binomial INAR(1) claim count regression model which only allows for positive dependence between the time series of claim count responses. Our main achievement is that we develop novel alternative Expectation-Maximization type algorithms for maximum likelihood estimation of the parameters of the models which are demonstrated to perform satisfactory when the models are fitted to Local Government Property Insurance Fund data from the state of WisconsinRegistros relacionados: En: European Actuarial Journal. - Cham, Switzerland : Springer Nature Switzerland AG, 2021-2022. - 15/04/2024 Volúmen 14 - Número 1 - abril 2024 , p.225-255Materia / lugar / evento: Matemática del seguro Siniestros Seguros Mercado de seguros Otros autores: Dassios, A.
Tzougas, George
Outras classificações: 6
Referencias externas:
Ver detalhe do número