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ON THE PREMIUM OF EQUITY-LINKED INSURANCE 
CONTRACTS 

 
Beatriz Balbás and Raquel Balbás1 

 
 
Abstract 

 
We will deal with the valuation of equity-linked insurance contracts such as 
unit links. We will introduce a premium principle based on the optimization 
of expectation bounded and coherent measures of risk. The premium 
principle seems to present some interesting properties. Indeed, firstly, it is 
sub-additive and favors diversification. Secondly, it integrates both actuarial 
and financial risks, and does not have to impose independence between 
them. Thirdly, it provides the insurer with hedging strategies. Finally, it is 
very easy to use in practice since one only has to solve linear programming 
problems, despite the fact that risk measures are not linear at all. 
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Sobre la prima de contratos de seguro ligados al mercado financiero 
 
Resumen  

 
Estudiaremos el problema de la valoración de contratos de seguro ligados al 
mercado financiero, tales como las anualidades o rentas ligadas a índices 
bursátiles. Introduciremos un principio de prima basado en la optimización 
de medidas de riesgo coherentes y acotadas por la media. Este principio 
parece presentar una serie de propiedades de interés. En efecto, en primer 
lugar, es sub-aditivo, por lo que favorece la diversificación. Segundo, se 
integran los riesgos actuariales y financieros, y no hace falta suponer 
independencia de los mismos. Tercero, se proporcionarán estrategias de 
cobertura para el asegurador. Y cuarto, la prima del contrato es fácil de 
calcular en las aplicaciones prácticas, puesto que sólo hay que resolver 
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problemas de programación lineal, pese a que las medidas de riesgo están 
lejos de ser lineales. 
 
Palabras clave. Medidas de riesgo, Prima, Contrato ligado al mercado 
financiero. 
 
Clasificación J.E.L., G22, G23, G12. 
 
 
 
I. Introduction 
 
Artzner et al. (1999) introduced the axioms and properties of their “coherent 
measures of risk” and later many authors extended the discussion (for 
example, Rockafellar et al., 2006, introduced the “expectation bounded 
measures of risk”, and Brown and Sim, 2009, defined the “satisfying 
measures”).  
 
Since then many actuarial and financial problems have been revisited. For 
instance, with respect to purely actuarial topics, Gao et al. (2007) deal with 
equilibrium prices, Kaluszka (2005), Bernar and Tian (2009) or Centeno and 
Simoes (2009) study optimal reinsurance problems and Barbarin and 
Devolder (2005) or Gaillardetz (2008) focus on equity linked annuities. 
Mixed (i.e., both actuarial and financial) problems are presented in Wang 
(2000), Hamada and Sherris (2003), or Balbás et al. (2008), amongst others, 
and pure financial problems may be found in Föllmer and Leukert (2000), 
Nakano (2003), Nakano (2004), Staum (2004), etc. 
 
There are several reasons justifying this growing interest in new risk 
measures, but two of them may deserve special attention. Firstly, if 
asymmetric returns are involved then the classical standard deviation is not 
compatible with the Second Order Stochastic Dominance and the usual 
Utility Functions (Ogryczak and Ruszczynski, 1999 and 2002). Secondly, 
but also very importantly, modern risk measures may be understood as 
possible capital losses and capital requirements, which provides us with 
information that is not yielded by the standard deviation. 
 
This article focuses on the valuation of insurance products that are linked 
with the financial market (i.e., with the evolution of some risky asset) with 
special attention to the risk level given by a general expectation bounded and 
coherent risk measure. As will be indicated, there are many potential 
products involved, though “the unit links” are probably the most popular 
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contracts. Besides, expectation bounded and coherent risk measures are 
general enough and contain many important particular cases (the Dual 
Power Transform of Wang, 2000, the Conditional Value at Risk of 
Rockafellar et al., 2006, etc.). 
 
The paper’s outline is as follows. The second section will be devoted to 
presenting the general framework we are going to deal with. In Section 3 we 
will draw on an original idea of Balbás et al. (2010b) so as to introduce a 
new Premium Principle for contracts affected by both actuarial and financial 
risks. Actually, the paper above gives a general method that allows us to 
extend pricing rules in incomplete financial markets by minimizing risk 
measures, while we adapt that pricing rule to the concrete problem we are 
studying. The introduced premium principle seems to present interesting 
properties. Indeed, firstly, it is sub-additive and favors diversification. 
Secondly, it integrates both actuarial and financial risks, and does not have 
to impose independence between them. Thirdly, it provides the insurer with 
hedging strategies that make the global risk faced by the insurer vanish. 
 
The fourth section will be devoted to analyzing models represented by a 
discrete probability space. This special setting is important for two reasons. 
Firstly, it may significantly simplify computations in practical studies, and 
secondly, it is not restrictive at all since for every real situation there exist 
discrete approximations as close as desired. Concrete equity-linked 
insurance products and other applications are given in Section 5, with special 
focus on the usual equity-linked annuities. They are modeled according to an 
original idea of Balbás et al. (2010a). 
 
 The last section of the paper summarizes the most important conclusions. 

 
 
II. Preliminaries and notations 

 
Let as assume that 0=t  and Tt =  represent the current and a future date 
respectively. Consider the probability space ),,( μℑΩ  composed of the set 
Ω  (states of nature or states of the world), the σ -algebra ℑ  (information 
available at Tt = ) and the probability measureμ . Suppose that 

fa Ω×Ω=Ω  contains both those states of nature belonging to aΩ  and 
related to the evolution of a set of insurance policies, and the states of nature 
belonging to fΩ , related to the evolution of a financial market. Similarly, 
representing with the symbol ⊗  the tensor product of σ -algebras, we will 
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assume that fa ℑ⊗ℑ=ℑ , but we will not impose independence between 

the actuarial and the financial risk. In other words, if aμ  and fμ  denote the 

natural (marginal) projections of the probability measure μ  on aΩ  and aΩ  
respectively, in general, we will not assume the fulfillment of the equality 

fa μμμ ⊗= , fa μμ ⊗  denoting the usual tensor product of aμ  and fμ .2 
 
Let be [ ]2,1∈p  and suppose that ),,( μℑΩpL  (henceforth pL  for short) 
denotes the usual space of −ℑ measurable random variables y  such that the 

expectation of py  is finite. Denote by [ ]∞∈ ,2q  the conjugate of p  

( 1/1/1 =+ qp ). It is well known that the Riesz Representation Theorem 
states that qL  is the dual space of pL  (Horváth, 1966, or Luenberger, 1969). 
In particular, every real valued linear and continuous function on pL  takes 
the form  
 

( ) ℜ∈→∋ yqEyLp * , 
 

qLq ∈*  being an arbitrary element that only depends on the linear function 
we are dealing with, and ( )−E  denoting the mathematical expectation of any 
random variable. 
Analogous ideas and notations will apply for the actuarial and the financial 
problems, i.e., pL  ( qL ) will be used for the joint problem, while ( )a

pL Ω  

and ( )f
pL Ω  ( ( )a

qL Ω  and ( )f
qL Ω ) will represent the actuarial and the 

financial ones respectively. With the usual convention we can assume that 
( ) p

a
p LL ⊂Ω  and ( ) p

f
p LL ⊂Ω , and identical inclusions hold if q plays 

the role of p.  
 
Next let us introduce the risk measurement criterion and the pricing rule of 
the financial market. Consider a general risk function  

ℜ→pL:ρ  
 
                                                 
2 Actually, the independence between both probability spaces is not a restrictive assumption, but some 
authors have pointed out that the results of some insurance companies may affect the behaviour of some 
financial markets. For instance, significant sales from pension funds could worsen the performance of 
some index. Thus, we will never impose independence (see Gaillardetz, 2008, for an alternative 
discussion). 
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Since 2LLp ⊃ , we will deal with risk measures that may be extended 
beyond 2L . Denote by 
 

( ) ( ){ }pq LyyyzELz ∈∀≤−∈=Δ ρρ : .                                           (1) 
 
The set ρΔ  is obviously convex. We will assume that ρΔ  is also 

( )−pq LL ,σ compact,3 0≥z  and ( ) 1=zE  for every ρΔ∈z , and  
 

( ) ( ){ }ρρ Δ∈−= zyzEMaxy :                                                                 (2) 
 
holds for every pLy∈ .  Summarizing, we have: 
  
Assumption 1. The set ρΔ  given by (1) is convex and ( )−pq LL ,σ compact, 
its elements are non-negative and have an expected value equal to one, and 
(2) holds for every pLy∈ .                                                                                                       

 
The assumption above is closely related to the Representation Theorem of 
Risk Measures stated in Rockafellar et al. (2006). Following their ideas, it is 
easy to prove that the fulfillment of Assumption 1 holds if and only if ρ  is 
continuous and: 
 
Translation invariant, i.e., ( ) ( ) kyky −=+ ρρ , for every pLy∈  and 

ℜ∈k . 
Sub-additive, i.e., ( ) ( ) ( )´´ yyyy ρρρ +=+ , for every pLyy ∈́, . 
Homogeneous, i.e., ( ) ( )yky λρλρ =+ , for every pLy∈  and 0>λ . 
Mean dominating, i.e., ( ) ( )yEy −≥ρ , for every pLy∈ . 
Decreasing, i.e., ( ) ( )´yy ρρ ≤ , for every pLyy ∈́,  with ´yy ≥ . 
 
According to Artzner et al. (1999) and Rockafellar et al. (2006), risk 
measures satisfying the properties above (or Assumption 1) are called 
Coherent and Expectation Bounded. Particular interesting examples are the 
Conditional Value at Risk (CVaR) of Rockafellar et al. (2006), the Weighted 
Conditional Value at Risk (WCVaR) of Cherny (2006), the Compatible Value 

                                                 
3 See Horvàth (1966) or Luenberger (1969) for further details about ( )−pq LL ,σ compact sets.  
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at Risk (CCVaR) of Balbás and Balbás (2009), the Dual Power Transform 
(DPT) of Wang (2000) and the Wang Measure (Wang, 2000), among many 
others. 
 
If ρ  satisfies the properties above, then so do the restrictions of ρ  to 

( )a
pL Ω  and ( )f

pL Ω . Thus Assumption 1 still holds if  ρΔ  is replaced by 

the set a,ρΔ  (or f,ρΔ ) below and ( )a
pLy Ω∈ ( ( )f

pLy Ω∈ ), 
 

( ) ( ) ( ) ( ){ }a
p

a
q

a LyyyzELz Ω∈∀≤−Ω∈=Δ ρρ :,         

( ) ( ) ( ) ( ){ }f
p

f
q

f LyyyzELz Ω∈∀≤−Ω∈=Δ ρρ :,        
 
With respect to the financial market, we will assume that it is perfect and 
complete, that is, there are no transaction costs or other 
imperfections/frictions and every final pay-off ( )fLy Ω∈ 2  may be reached 
at T by means of a self-financing portfolio adapted to the arrival of 
information (see Cochrane, 2001, for further details about the usual 
assumptions of a pricing model in finance). Actually, the completeness of 
the market is not necessary for most of the results we are going to deal with, 
but it significantly simplifies the exposition, and most of the classical pricing 
models (binomial, Black and Scholes, Heston, etc) are complete. 
Accordingly, we can go beyond the Riesz Representation Theorem above. 
Indeed, in order to prevent the existence of arbitrage (Cochrane, 2001), there 
is a unique Stochastic Discount Factor ( )fLz Ω∈ 2

π  such that 0>πz  
almost surely and  
 

( ) ( )πyzEey rT−=Π                                    (3) 
 
holds for every ( )fLy Ω∈ 2 , r denoting the riskless interest rate and ( )yΠ  
denoting the initial (at t=0) price of every final pay-off y. If one takes the 
riskless asset rTey =  then (3) obviously implies that  
 

( ) 1=πzE                                                      (4) 
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III. Pricing equity-linked insurance contracts 
 
Consider an insurance contract whose final value (at T) depends of both the 
actuarial and the financial risk. Denote by 2Lg ∈  the random amount that 
the insurer will pay to her/his client. Then, the insurer may look for 
“protection” in the financial market so as to minimize the global risk of 
her/his net position. Though the financial market is complete, it would be 
obviously a very restrictive assumption to consider that so is the insurance 
(or the joint) market, so the insurer is pricing g in an incomplete market. 
There are several approaches dealing with the valuation with risk measures 
of contingent claims in an incomplete market (Wang, 1999, Hamada and 
Sherris, 2003, Nakano, 2003 and 2004, etc.), though we will follow a minor 
modification of that of Balbás et al. (2010b). Accordingly, the premium that 
at t=0 the insurer will receive for g is given the optimal value of the 
minimization problem 
 

( )

( )⎪
⎪
⎩

⎪
⎪
⎨

⎧

Ω∈
ℜ∈
≤
+−

fLy
P

PyzE
PgyMin

2

)( π

ρ

                    (5) 

 
( )yP,  being the decision variable. The interpretation of (5) is clear. Indeed, 
according to the first constraint, P  represents the value (at T) of the hedging 
strategy that the insurer will use so as to compensate possible capital losses 
provoked by –g, 4 whereas ( )gy −ρ  is (the value at T of) the capital 
requirement or reserve that the insurer must add so as to prevent severe 
damages and/or negative evolutions of the financial market. Thus, the 
objective ( ) Pgy +−ρ  reflects (the value at T of) the capital needed by the 
insurer so as to sell the risk g and hedge the position, and therefore, 
according to Balbás et al. (2010b), this is (the value at T of) the price that the 
insurer must receive for g. Notice that the risk level that the insurer has to 
face vanishes, since for the solution y of (5) one has that 
 

( )( )( ) 0=−+− gygy ρρ                          (6) 
 

                                                 
4 The client will receive the amount g, so the insurer will receive -g. 
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because ρ  is translation invariant, and the amount ( )gy −ρ  has been paid 
by the customer as the first part of the global premium. 
Once (5) has been solved, its optimal value must be multiplied by the 
discount factor rTe−  to compute the insurance premium, since it is paid at 
t=0. 
 
Actually, there is a minor difference between (5) and the optimization 
problem proposed in Balbás et al. (2010b), since these authors only deal 
with a financial problem and do not incorporate any actuarial risk. However, 
straightforward modifications of their arguments allow us to adapt their 
major results about duality and Lagrange multipliers for (5). Thus, since (5) 
is obviously a feasible mathematical programming problem, we will give 
without proof the following theorem. 
 
Theorem 2. Suppose that (5) is bounded. 5 Consider the dual problem  
 

( )

( )
⎪
⎪
⎩

⎪
⎪
⎨

⎧

Ω∈−
Δ∈

⊥
fLzz

z
gzEMax

2
π

ρ                     (7) 

z being the decision variable and ⊥L  denoting the orthogonal manifold of 
every subspace L  of 2L . Then (7) is solvable and its maximum equals the 
primal infimum of (5). Furthermore, ( )**, Py  and *z solve (5) and (7) 
respectively if and only if the following Karush-Kuhn-Tucker conditions 
 

( ) ( ) ( ) ( )
( )

( )
( )⎪

⎪
⎩

⎪
⎪
⎨

⎧

Δ∈ℜ∈Ω∈
Ω∈−

=
Δ∈∀−≤−

⊥

ρ

π

π

ρ

**2*

2*

**

****

,,

,

zPLy
Lzz

PyzE
zzyEgzEzyEgzE

f

f

(8) 

 
hold.                                                                                                                                          

                                                 
5 Hereafter we will assume that (5) is bounded. Actually, there are some “pathological” situations leading 
to unbounded problems, but they must be overcome with appropriate modifications of the risk measure 
ρ . Further details may be found in Balbás and Balbás (2009) and Balbás et al. (2010b). Anyway, it is 

worth pointing out that the feasible set of (7) does not depend on g, so (5) becomes unbounded for every g 
if so is for some particular risk, for instance the null one. 
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Bearing in mind (1) and (4), it is easy to see that ( )0,** Py −  and *z satisfy 
(8) if and only if so do ( )** , Py  and *z , which implies that one can always 
look for a solution making the variable P vanish. Thus, the unknown *P  
may be removed in System (8), which is illustrated in the following result. 
 
Corollary 3. If (5) is solvable then there exists a solution ( )**, Py  such that 

0* =P . Moreover ( )0,*y  and *z solve (5) and (7) if and only if  
 

( ) ( ) ( )
( )

( )
( )⎪

⎪
⎩

⎪
⎪
⎨

⎧

Δ∈Ω∈
Ω∈−
=

Δ∈∀≤−

⊥

ρ

π

π

ρ

*2*

2*

*

**

,

0
,

zLy
Lzz

yzE
zgzEzyEgzE

f

f

(9) 

 
hold.    
 
Proof. As pointed out above, we can assume that the primal solution 
( )**, Py  satisfies 0* =P . Hence, the second and fourth expressions in (9) 
trivially follow from the equivalent expressions in (8), while the first one 
becomes obvious if we prove that 0)( ** =zyE . Bearing in mind the second 

condition in (9) and the properties ( )⊥Ω∈− fLzz 2*
π  and ( )fLy Ω∈ 2* , 

we have that ( ) 0)( *** == πzyEzyE .                    
 
The introduced price of g makes sense even if g does not depend on the 
actuarial risk ( ( )fLg Ω∈ 2 ). Let us see that we are not modifying its price in 
such a case. 
 
Corollary 4. If ( )fLg Ω∈ 2  then the optimal value of (5) and (8) equals 

( ) rTegΠ . 

Proof. If *z is the dual solution then ( )⊥Ω∈− fLzz 2*
π . Thus, taking into 

account (3), 
( ) ( ) ( )gzEgzEeg rT *==Π π .             
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The later corollary justifies that the price of g will be denoted by ( )gΠ  in 
what follows. 
 
Every premium principle should be sub-additive, since otherwise customers 
would prefer to sign several contracts rather than a single one. Moreover, the 
seminal paper by Deprez and Gerber (1985) already justified that most of 
the usual premium principles are given by convex functions. Let us show 
that our premium respects these requirements. 
 
Corollary 5. If 2

21,, Lggg ∈   and 0≥α  then 
( ) ( ) ( )2121 gggg Π+Π≤+Π  and ( ) ( )gg Π=Π αα . 

Proof. According to Theorem 2 there exists *z  (8)-feasible such that  
 
( ) ( )( ) ( ) ( ) ( ) ( )212

*
1

*
21

*
21 gggzEegzEeggzEegg rTrTrT Π+Π≤+=+=+Π −−−

 
 
where the last inequality also follows from Theorem 2. The second 
expression may be proved in a similar manner.                                                                        
 
Finally, let us point out that condition ( )⊥Ω∈− fLzz 2*

π  may be given in a 
different manner, which trivially implies that (7), (8) and (9) may be 
accordingly modified and the new results remain true. We will draw on usual 
notations so as to represent mathematical conditional expectations. 
 
Proposition 6. Suppose that ρΔ∈*z . Then, ( )⊥Ω∈− fLzz 2*

π  holds if 
and only if  
 

( ) ( )AzEAzE ff ∈=∈ ωω π //*               (10) 
 
for every set fA ℑ∈  with ( ) 0>Afμ  . 
 
Remark. If it is not confusing Expression (9) will simplify to  
 

( ) ππ zzzE =/*                                             (11) 
 
since this new notation is much more intuitive. 
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Proof of Proposition 6. Suppose that ( )⊥Ω∈− fLzz 2*
π , 

fA ℑ∈ and ( ) 0>Afμ . Since the market is complete the indicator function 

A1  is a reachable pay-off,6 so ( )⊥Ω∈− fLzz 2*
π  leads to 

 

∫∫ ×Ω
=−

Aa

dzz 0)( * μπ . 

 
Hence, 
 

∫ ∫×Ω
=

A A f
a

dzdz μμ π
* ,                               (12) 

 
which trivially leads to (10). 
 
Conversely, suppose that (10) holds. Then, (12) also holds for every 

fA ℑ∈  with ( ) 0>Afμ , and therefore  
 

∫ ∫Ω Ω
=

f
fydzydz μμ π

*                          (13) 

 
for every ( )fLy Ω∈ 2 , because (13) holds for every simple random variable 

in ( )fL Ω2  and the set of simple random variables is dense in this space.     
                                  
 
IV. The discrete case 

 
This section will be devoted to showing that (7) and (9) make it possible to 
solve (5) in practice, i.e., one can easily compute a “fair price” for Risk g as 
well as the optimal hedging strategy for its financial risk. For illustrative 
reasons we are going to deal with a discrete probability space ),,( μℑΩ , 
though it is also possible to solve the problem in the general framework.7 

                                                 
6 Recall that ( ) 11 =ωA  if A∈ω  and ( ) 01 =ωA  otherwise. 
7 Actually, in Balbás et al. (2009) a more complicated optimal reinsurance problem is solved in a 
“continuous” probability space, and Anderson and Nash (1987) present very complete information about 
algorithms related to infinite-dimensional linear optimization problems. However, we will deal with 
discrete spaces here to simplify the exposition. Moreover, discrete probability spaces have been often 
used in actuarial and financial approaches (Nakano, 2003, Calafiore, 2007, Mansini et al., 2007, 
Gaillardetz, 2008, etc.), since they permit us to give accurate approximations of every probability space. 
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 If we consider that { }a
n

aa
a ωωω ,...,, 21=Ω  and { }f

m
ff

f ωωω ,...,, 21=Ω  
then, according to Proposition 6, Problem (7) becomes 
 

( )

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

==

Δ∈

∑

∑∑

=

= =

mjzz

z

zgMax

jjf

n

i
jiji

jiji

n

i

m

j
jiji

,...,2,1,,,
1

,,

,,

1 1
,,

π

ρ

μμ
  (14) 

 
( ) mjni

jijiz ==

==

,
1,1,  being the decision variable. Obviously, we are denoting 

( )f
j

a
iji gg ωω ,, = , ( )f

j
a
iji zz ωω ,, = , ( )f

j
a
iji ωωμμ ,, = , ( )f

jj zz ωππ =,  

and ( )f
jfjf ωμμ =, , i=1,2,…,n and j=1,2,….,m.  

 
Analogously, the Karush, Kuhn Tucker like conditions (9) become in this 
case 
 

( )
( )

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

=

==

Δ∈

Δ∈∀≤⎟
⎠

⎞
⎜
⎝

⎛
−

∑

∑

∑∑ ∑ ∑∑∑

=

=

= = = = ==

m

j
jj

jjf

n

i
jiji

jiji

jiji

n

i

m

j

m

j

n

i

m

j
jiji

n

i
jjijiji

yz

mjzz

z

zzgyzzg

1

*
,

,,
1

,,

,,

,,
1 1 1 1 1

*
,,

1

*
,,,

0

,...,2,1,

,

π

π

ρ

ρ

μμ

(15) 
 

( ) mjni

jijiz ==

==

,

1,1
*
,  and ( ) mj

jjy =

=1
*  being the unknowns. Notice that (15) may be easily 

solved in practice if the solution ( ) mjni

jijiz ==

==

,

1,1
*
,  is known, because in such a 
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case ( ) mj

jjy =

=1
*  becomes the only unknown of the system. To compute 

( ) mjni

jijiz ==

==

,

1,1
*
,  one must solve Problem (14), but this is frequently a linear 

optimization problem that may be easily solved by the popular simplex 
method. For instance, a very important particular risk measure satisfying the 
linearity of (14) is the Conditional Value at Risk or CVaR. This risk measure 
is becoming very interesting for both researchers and practitioners.8  
 
According to Rockafellar et al. (2006), if 10 <<υ  denotes the confidence 
level of the CVaR (henceforth we will denote υCVaR , if necessary) then we 
have that the sub-gradient given in (1) becomes 
 

⎭
⎬
⎫

⎩
⎨
⎧ =

−
≤≤∈=Δ ∞ 1)(,

1
10: zEzLzCVaR υυ

. 

 
Thus, bearing in mind that we are dealing with discrete spaces, (14) becomes 
 

( )

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

==

==≤≤

∑

∑∑

=

= =

mjzz

mjniz

zgMax

jjf

n

i
jiji

jiji

n

i

m

j
jiji

,...,2,1,

,...,2,1,,...,2,1,10

,,
1

,,

,,

1 1
,,

πμμ

υ

       (16) 
 
Notice that constraint  
 

( ) 1=zE  
 
does not have to be imposed. Indeed, it trivially follows from the last 
restriction of (16) and Expression (4). 

 
                                                 
8 The linearity of (14) also holds for important closely related risk measures such as the WCVaR (Cherny, 
2006) and the CCVaR (Balbás and Balbás, 2009), among others. 
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V. Examples and applications 
 

Maybe the most important practical application is given by the equity linked 
annuities or unit links. Actually these products have already been studied 
with risk measures beyond the variance, like VaR and CVaR (Barbarin and 
Devolder. 2005, Gaillardetz., 2008, etc.) though we will propose a quite 
different approach more closely related to the discussion above. Actually we 
will follow the initial approach of Balbás et al. (2010a), where it is shown 
that the optimization of modern risk measures may be used so as to compute 
the loading rate of these products. With respect to Barbarin and Devolder 
(2005), Gaillardetz (2008), and other interesting contributions, our analysis 
makes the global risk of the insurer vanish (see (6)). Moreover, as already 
said, we do not have to impose independence between both the actuarial and 
the financial risk. Finally, but also very important, we do not have to impose 
any concrete pricing model in the financial market, i.e., every complete 
arbitrage free pricing model may be used 
 
Suppose for instance that T=1 year is an initial horizon and consider k clients 
of the insurer. The thj -client will pay the premium jP  at t=0 and will 
receive the pay-off 

⎩
⎨
⎧ −

=
aliveIaP

alivenotH
g

j

j
j ,

,
                       (17) 

 
where 10 ≤< a  and I denotes the (annual) realized return of a chosen 
financial asset (an index, usually). Alternative modifications of (17) may be 
considered according to the specific properties of the contract. 9 With the 
notation of previous sections we have that 
 

∑
=

=
k

j
jgg

1
.                                      (18) 

 
Actually we could price every individual contract rather than the global 
portfolio of policies represented in (18), but the sub-additivity of the 
premium principle Π  (see Corollary 5) justifies that pricing the global 

                                                 
9 For instance, one can assume that there is a guaranteed minimum amount if the customer survives, and 
therefore the pay-off becomes { }CgMax j , , where jg  is given by (17). 
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portfolio leads to cheaper and more competitive products without facing 
higher levels of risk (see (6)).  
 
Once ( )gΠ  has been computed by using (7) and (9) (or (15) and (16)) the 
global loading rate must be divided so as to calculate the loading rate of 
every particular policy.  We will not discuss this second part which is 
beyond our focus. Nevertheless, classical actuarial methods (probably 
related to mortality tables) may apply. 
 
Though equity linked annuities are very important equity linked insurance 
contracts, it is worth pointing out that the analysis of this paper may apply 
for alternative insurance policies. For instance, an illustrative example may 
be a bonus-malus system that links the lack of claims and the financial 
market, 10 or a policy involving the hole integrated wealth of the customer, 
composed of both her/his goods and her/his assets. According to the sub-
additivity of the premium principle Π  (Corollary 5) the integrated treatment 
will improve the global insurance price.  
 
For all of these possible contracts the developed theory applies and 
minimizes both the (global, actuarial and financial) risk of the insurer and 
the cost of the contract. 
 
 
 
VI. Conclusions 
 
Modern coherent and expectation bounded measures of risk have been used 
in many actuarial and financial problems, and pricing issues are a very 
important particular case. The approach of this paper deals with the 
valuation of equity-linked insurance contracts such as equity linked annuities 
and other products. We have proposed a premium principle based on the 
optimization of expectation bounded and coherent risk measures that seems 
to present several interesting properties. Indeed, firstly, it is sub-additive and 
convex, and therefore it favors diversifications. Secondly, it integrates both 
actuarial and financial risks, and does not have to impose independence 
between them. As pointed out by several authors, the absence of 
independence might be a restrictive assumption in some applications. Third, 
it provides the insurer with hedging strategies, since the global risk of the 
insurance company vanishes. Finally, it is very easy to use in practice since 

                                                 
10 i.e., the premium reduction is not only related to the number of claims of the policy, but also with the 
evolution of some financial market or security. 
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one only has to solve linear programming problems, despite the fact that risk 
measures are not linear at all. 
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