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Abstract
After scrutinizing technical, legal, financial, and actuarial aspects of cyber risk, a 
new approach for modelling cyber risk using marked point processes is proposed. 
Key covariates, required to model frequency and severity of cyber claims, are iden-
tified. The presented framework explicitly takes into account incidents from mali-
cious untargeted and targeted attacks as well as accidents and failures. The resulting 
model is able to include the dynamic nature of cyber risk, while capturing accu-
mulation risk in a realistic way. The model is studied with respect to its statistical 
properties and applied to the pricing of cyber insurance and risk measurement. The 
results are illustrated in a simulation study.

Keywords  Cyber risk · Cyber insurance · Emerging risks · Marked point processes · 
Accumulation risk

1  Introduction

Researchers and practitioners from different disciplines have analysed ‘cyber risk’ 
and ‘cyber insurance’ from their provenience, among them IT system experts, econ-
omists, statisticians, actuaries, etc.; a recent survey of the literature on these top-
ics in business and actuarial science is provided in Ref. [1]. Despite the lack of an 
established agreed-upon framework, all stakeholders share the opinion that cyber 
risk is on the rise. This is substantiated by continuously changing and expanding 
cyber threats [2] and an increasing frequency and magnitude of the financial con-
sequences of cyber incidents [3–6]. The potential consequences of cyber incidents 
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have also been prominently covered by the media; examples being [7–9]. This has 
lead to various cooperations between academia, industry, and government agencies 
(e.g. CISA1 in the US or CiSP2 in the UK) with the aim of developing defense strate-
gies against cyber crime and enhancing the overall resilience of IT networks. Corpo-
rations have moved their perception of cyber security from a merely technical topic 
to a larger business risk [10], but this awareness does not yet seem to have translated 
into widespread institutionalisation of cyber risk management [11]. A recently high-
lighted aspect is the connection between Cyber Incidents and Business Interruption, 
which jointly ranked as the top global business risks in a 2019 survey [12].

One strategy to cope with risk is risk transfer, e.g. via insurance contracts. Par-
allel to the risk, the demand for cyber insurance solutions has been continuously 
increasing [10] over the last few years. In spite of its growth, however, today’s cyber 
insurance market is still relatively small compared to the value of the assets that 
could be impaired by a cyber event [2]. Barriers are not a lack of demand for cyber 
risk transfer, but rather a number of obstacles that complicate the understanding and 
quantification of the underlying risk, including the lack of solid data on losses, a 
fast-paced evolution of cyber risk, and the disparity of data protection laws globally 
[4, 13].

Despite these challenges, especially in the US an existing market is already estab-
lished; including underwriters, brokers, and organisations specialized on cyber data 
analytics [14]. Concerning the pricing of cyber risk, however, a surprising finding 
was published by Romanosky et al. [15]: they systematically analysed cyber policies 
across the US and found that the main themes used for pricing included looking to 
competitors and estimation/guesswork. The ad-hoc nature of cyber policy pricing 
confirms that a unified quantitative understanding of this new type of risk and its 
underlying drivers is still at its infancy.

The cyber risk model developed in the present work, designed from an actuarial 
point of view, constitutes a threefold contribution: 

1.	 The model is based on a holistic approach to cyber risk, systematically describing 
the underlying risk factors while including information-technological, economic, 
and actuarial viewpoints.

2.	 The model is able to capture dependencies and accumulation risk in a realistic 
way by explicitly taking into account idiosyncratic cyber incidents and systemic 
cyber events.

3.	 Using the loss distribution approach, the model can easily be applied in an insur-
ance framework. A simulation study illustrating this application is included.

The remainder of this paper is structured as follows: Sect. 2 carefully reviews the 
existing literature on cyber risk and identifies key findings for an actuary. Section 3 
presents a holistic view on cyber risk, including key characteristics and risk factors. 

1  https://​www.​cisa.​gov.
2  https://​www.​ncsc.​gov.​uk/​secti​on/​keep-​up-​to-​date/​cisp.

https://www.cisa.gov
https://www.ncsc.gov.uk/section/keep-up-to-date/cisp
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A new model is developed and analysed in Sect. 4 and illustrated in a simulation 
study in Sect. 5. Section 6 concludes and reveals opportunities for further research.

2 � Background and literature review

2.1 � Literature review

Most papers on cyber risk and cyber insurance are restricted to one particular point 
of view (e.g. IT security, network modelling, actuarial approaches) and the overall 
picture remains fragmented. In what follows, we group the existing literature accord-
ing to the main theme of investigation.

2.1.1 � Game‑theoretic studies

Bohme and Schwartz [16] studied a unifying framework for modelling cyber insur-
ance and classified existing research approaches of cyber insurance market models. 
Until 2010, many academic papers were motivated by the study of interdependent 
security and primarily focused on questions of network security and its relation to 
the existence of an insurance market, often using game-theoretic approaches (e.g. 
Refs. [17–22]). Other works concentrated on the correlation properties [23] and 
monoculture effects [24] of cyber risk and the existence of an insurance market 
under these conditions.

More recently, a very comprehensive overview of various aspects of cyber 
insurance was given in Ref. [25], including a classification of existing research 
approaches with interdependent security according to the underlying insurance mar-
ket model. While the listed approaches differ in their assumptions, the research aims 
are quite similar. Most studies focus on the existence of a Nash Equilibrium for secu-
rity investments (e.g. Ref. [26]) and the existence or efficiency of an insurance mar-
ket (e.g. Refs. [17, 19, 20, 22, 27–30]). Slightly different mathematical approaches 
include the use of Bayesian network games to design optimal cyber insurance con-
tracts [31] or to study the effect of network externality on security adoption [32].

Under quite realistic assumptions, the socially optimal level of security invest-
ments cannot be attained in these models, as individuals are incentivised to under-
invest [25]. Furthermore, given the availability of cyber insurance, individuals are 
even more reluctant to invest in self-protection and it is thus generally not possible 
to design insurance as a means to reach socially optimal levels of investment (e.g. 
Refs. [19, 20, 22, 27–30]). Some studies thus test whether regulatory actions (e.g. 
fines or rebates, taxes for low self-protection, or risk pooling arrangements) might 
enable insurance to incentivise self-protection, reaching conflicting conclusions (e.g. 
Refs. [17, 19, 22, 28, 29, 33, 34]).

2.1.2 � Interdependence and network models

Given that an accepted terminology and framework for cyber risk does not yet exist, 
some authors concentrated on developing taxonomies and frameworks (e.g. Refs. 
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[35–37]) or on embedding cyber into the better-known context of operational risk 
management (e.g. Refs. [38, 39]).

One feature of cyber risk that is commonly regarded as particularly problematic 
is the lack of independence among the risks/claims, a problem that was addressed 
using copula approaches in Refs. [40, 41], linear correlations in Ref. [24], and a 
combination of both in Ref. [23]. More recently, Peng et al. [42] studied the mul-
tivariate dependence exhibited by real-world cyber attack data using a Copula-
GARCH model. The latter works describe cyber attacks of different types or mul-
tivariate nature to be the source of dependence. Peng et al. [43] propose modelling 
and predicting extreme cyberattack rates by using marked point processes and simi-
larly, studying an empirical data set of breach incidents [44] argue that stochastic 
processes rather than distributions should be used to model and predict hacking 
breach incident inter-arrival times and breach sizes. Baldwin et al. [45] find strong 
evidence of contagion in cyber attacks to different components of a firm’s informa-
tion system using self- and mutually-exciting point processes.

Instead of considering underlying attack rates, studies concerned with cyber 
insurance seek to quantify the expected monetary losses of an insurer’s portfolio. To 
this end, dependencies between losses can also be captured by considering a model 
of epidemic spreading on the underlying network of firms. Fahrenwaldt et al. [46] 
use a (Markovian) SIS-process to model the infectuous spread of a cyber vulnerabil-
ity and subsequently an adapted counting process for the occurrence of attacks. Xu 
and Hua [47] use Markovian and Non-Markovian processes for epidemic spreading 
and propose to use a copula approach to capture the dependence among time-to-
infection distributions. Xu et al. [48] study a model of cyber epidemics over com-
plex networks, additionally introducing copulas to capture dependencies between 
cyberattack events.

2.1.3 � Data‑driven studies

The lack of publicly available, reliable, and sufficiently large data sets for cyber inci-
dents remains one of the obstacles for sound statistical investigations. Among the 
best-known data sources on data breaches are the continuously updated “Chronol-
ogy of Data Breaches” dataset by the California-based nonprofit corporation Privacy 
Rights Clearinghouse (PRC)3 and the “Open security foundation data loss data-
base”.4 The former data was e.g. studied by Edwards et al. [49], with the conclu-
sion that the number of records exposed can be modeled by the log-normal law and 
the daily frequency can be described by a negative binomial distribution. Somewhat 
surprisingly, the study found neither size nor frequency of data breaches to exhibit 
a time trend. Eling and Loperfido [50] use multidimensional scaling and goodness-
of-fit tests to analyze the distribution of the data breach information. They show that 
modelling severity using a log-skew-normal distribution seems adequate and find 
that different types of data breaches need to be modeled as distinct risk categories. 

3  Available for public download from https://​priva​cyrig​hts.​org/​data-​breac​hes.
4  Formerly available for public download from http://​datal​ossdb.​org.

https://privacyrights.org/data-breaches
http://datalossdb.org
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Eling and Jung [51] study the cross-sectional dependence of the data breach losses 
and identify a significant asymmetric dependence of monthly cross-industry losses 
in four categories by breach types as well as cross-breach type losses in five cat-
egories by industries. Farkas et al. [52] analyze heterogeneity of the reported cyber 
claims through the use of regression trees.

The second database was examined in Ref. [53], who focus on the theft of per-
sonal information and report a stable power-law tail distribution of personal identity 
losses per event. Wheatley et al. [54] combined data from both databases to focus 
exclusively on large breaches and study maximum breach sizes as well as severity 
distributions. The best fit is obtained by using a doubly truncated Pareto (Power law) 
distribution with linearly decreasing shape parameter for breach sizes, with sub-lin-
ear growth for the maximum log breach size.

Romanosky [55] uses a (commercial) dataset from Advisen, a US-based consult-
ant to the insurance industry, with the aim of examining the composition and costs 
of cyber events. They conclude that firms may lack a strong incentive to increase 
their investment in data security and privacy protection and the primary motivation 
may come from the cyber insurance industry through its use of incentive-based pre-
mium reductions.

While the aforementioned papers mostly concentrate on data breaches, Eling and 
Wirfs [56] has a wider focus: they define cyber risk as a subgroup of operational risk 
and analyze cyber data from a large operational risk database (SAS OpRisk Global 
data), including a global range of cyber incidents that have occurred over an around 
twenty-year period and considering actual costs instead of number of affected 
records only. The frequency of losses is found to be most adequately modelled by 
a Negative Binomial distribution in a static approach, and a Poisson process with 
covariate-dependent rate in a dynamic approach based on Ref. [57]. For the loss 
severity, none of the canonical candidates (exponential, Gamma, log-normal, log-
logistic, generalized Pareto, Weibull) were found to accurately model the entire loss 
data. Promising alternatives were a non-parametric transformation kernel estimation 
and an extreme value approach, where excesses over a threshold were modelled by a 
generalized Pareto distribution. The study highlighted the importance of distinguish-
ing between cyber risks of daily life and extreme cyber risks.

2.2 � Background on cyber insurance

Marotta et al. [25] provides an excellent summary of the past, present, and future 
of the cyber insurance market; as seen in 2017. They report an ongoing growth of 
available coverage, spurred by rising demand for insurance protection against cyber 
risks, which in turn is often caused by public coverage of severe cyber incidents [14, 
25, 58], the introduction of stricter legislation across the globe [2, 25], and firms’ 
own loss experience [14, 58]. In 2015, the global market for cyber insurance was 
estimated to be worth around $2 billion in premium, with US business accounting 
for approximately 90% . At the time, fewer than 10% of all companies had purchased 
cyber insurance, with typical buyers coming from industries holding large volumes 
of personal data, such as healthcare and retail, or relying on digitalized technology 
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processes, such as manufacturing and telecommunications. A rapid market growth 
was projected, with total premium reaching $20+ billion by 2025 [4]. As of today, 
this estimate still seems realistic, with a global market size of around $7 billion in 
2020 [59]. However, despite a strong growth and new insurance solutions being 
developed continuously, in 2017 the cyber insurance market in the US still had not 
reached the expected size predicted by optimistic forecasts [25]—thus the question 
of challenges inhibiting the market development arises.

2.2.1 � Challenges and insurability of cyber risk

For the European market’s supply side, ENISA et al. [13] identified the lack of solid 
data on losses, the fast pace of technology evolution, and the lack of adequate rein-
surance among the key factors. Regarding the demand side, companies’ most often 
mentioned reasons to refrain from purchasing cyber insurance include high prices 
[10, 11, 14, 58, 60], lack of availability of desired limits and coverage [14, 58, 60], 
concerns about numerous exclusions and restrictions [10], and lack of understanding 
about own exposure [61] or about policy offers [11].

A fundamental question is if, and under what circumstances, cyber risk is insur-
able at all, given its complex nature. ENISA et al. [13] first examined this question 
and concluded that cyber might well be an insurable type of risk fulfilling almost 
all of the considered desiderata. A more detailed analysis based on a dataset from 
an operational risk database was conducted in Ref. [62] and subsequently adressed 
in Ref. [63]. Their study identified the main problems to be lack of independence of 
loss occurrence, presence of information asymmetries, and lack of adequate cover 
limits. However, they remark that some problematic aspects might be alleviated in 
the future and thus advocate for systematic data collection, e.g. via platforms for 
data sharing organised by national regulators or international associations.

2.2.2 � Cyber insurance policies: coverage and exclusions

Ignoring the academic question “to be (insurable), or not to be,” in practice an imma-
ture cyber insurance market has developed and an increasing scope of cyber insur-
ance products is available. The majority of coverage is offered as dedicated cyber 
coverage [11, 14], with customers frequently shifting from endorsement to stand-
alone policies [58]. The most sought-after types of coverage include cyber-related 
business interruption, data breaches, cyber extortion, and fund transfer fraud/social 
engineering [14, 58]. Cyber policies typically cover the most common and costly 
incidents, including human error, mistakes, and negligence, external attacks by cyber 
criminals, system or business process failures, and malicious or criminal insiders. 
Rarely, however, attacks against business partners, vendors, or other third parties are 
included [10]. All policies generally distinguish between first and third party (liabil-
ity) losses [15]. A systematic qualitative analysis of cyber insurance policies across 
the US [15] found a surprisingly strong similarity regarding covered losses, where 
the ten most commonly covered losses included costs of claims expenses (includ-
ing legal expenses from penalties, defense, and settlement costs), public relations 
services, costs of notification of affected individuals, business income loss, data or 
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system restoration, forensic investigation costs, and data extortion expenses. Roma-
nosky et al. [15] points out that the top covered costs are cleanup costs, i.e. indirect 
costs in order to comply with laws, manage the firm’s reputation, and reduce fur-
ther expenses following a breach. Other studies found similar results for the covered 
types of losses (e.g. Refs. [2, 10, 16, 25]).

Regarding exclusions, Romanosky et al. [15] found more variation between poli-
cies, where the most common exclusions stemmed from criminal, fraudulent, or 
dishonest acts, errors or omissions, intentional violation of a law, criminal inves-
tigations or proceedings, and payment of fines, penalties, or fees. Furthermore, 
hard-to-quantify costs like loss of employee productivity or brand damage are often 
excluded [10].

Lastly, an important issue to mention is non-affirmative or silent cyber cover, 
meaning that cover for cyber incidents may exist for example in traditional property 
and casualty policies, even though this was not the intention of the underwriter [12]. 
Misconceptions like this might lead to a dangerous perception gap for insureds [11] 
who suffer from an illusion of protection as well as insurers who might suffer from 
(unintentionally written) exposure to cyber risk.

2.2.3 � Cyber insurance: risk assessment and pricing in practice

In the US, carriers typically assess an applicant’s cyber risk through questionnaires, 
most of which emphasize the amount and type of data handled by the investigated 
company, whereas the technical infrastructure and IT security management receive 
less attention [15]. The sample questionnaire for risk assessment for cyber insur-
ance by the German Insurance Association [64] differentiates between three risk cat-
egories primarily according to the annual turnover of a company and, secondarily, 
according to certain risky business units (e.g. e-commerce or handling of sensitive 
data), where the number of questions for a candidate increases with increasing risk 
category.

Regarding pricing, there seem to be large differences between carriers, while sur-
prisingly, some of the recurring themes are reliance on external sources, estimation, 
comparison with competitors, using underwriter’s experience, and adaptation of 
prices from other insurance lines [15]. Similarly, respondents in Refs. [14, 58] stated 
that competition between carriers seemed to prevail over actuarial assessment of the 
cost of risk. Most examined policies in Ref. [15] multiply a base premium by vari-
ables relating to standard insurance factors and industry-related factors, where high 
hazard weightings are assigned to businesses that collect and store a high volume of 
sensitive data or operate in industries like retail, healthcare, and the financial indus-
try. Finally, premium multipliers are commonly assigned according to the outcome 
of the questionnaire regarding IT security (e.g. privacy controls, network security 
controls, existence of an incident response plan). In conclusion, the impression man-
ifests that while insurers are trying to get a better understanding of cyber risk and its 
drivers, due to the lack of ample reliable data to describe the problem with sufficient 
statistical precision, as of today pricing often happens on an ad-hoc basis and estab-
lished quantitative models do not exist, yet.
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2.2.4 � The potential of cyber insurance: insurance as a service

While traditionally insurance is a means of risk transfer, cyber insurance can 
potentially offer more than compensation for monetary losses. Many insurers 
already advertise the services their cyber insurance policies include, e.g. preven-
tion and incident response services or crisis communication support [65]. Moreo-
ver, ENISA et al. [13] highlights possible benefits of the development of a cyber 
insurance market such as the potential to incentivise firms to increase IT secu-
rity through premium discrimination or the development of a market for secu-
rity consulting firms that investigate security practices as part of the underwriting 
process.

Another future topic for insurers concerns arrangements and standards that facili-
tate sharing data and information about cyber incidents. In order to help corpora-
tions to overcome their resentments about sharing such data, it is the insurers’ task 
to demonstrate that pooling data enables them to improve their range of services and 
design adequate new and transparent products that meet companies’ needs [11].

Thus, despite most academic works concluding that in their theoretical frame-
works cyber insurance cannot improve social welfare or network resilience, in prac-
tice the development of adequate, transparent cyber insurance products and services 
might entail a number of benefits transcending a mere possibility for companies’ 
cyber risk transfer. In summary, during the last few years research on cyber risk has 
considerably increased and various aspects have been considered (disjointly). Our 
work focuses on the viewpoint of actuarial science, but we aim at providing a holis-
tic modelling approach, taking into account both IT security and economic factors.

3 � Cyber risk: a holistic view

Cyber risk as a multi-faceted and young risk still lacks an established definition 
in the (insurance) literature. We therefore introduce key characteristics and risk 
factors a cyber risk model should comprise.

3.1 � Definition and key characteristics

Eling et al. [66] summarizes the origins, consequences, and key characteristics of 
cyber risk as follows:

 “Any risk emerging from the use of information and communication tech-
nology (ICT) that compromises the confidentiality, availability, or integrity 
of data or services. [...] Cyber risk is either caused naturally or is man-
made, where the latter can emerge from human failure, cyber criminality 
(e.g. extortion, fraud), cyberwar, and cyber terrorism. It is characterised by 
interdependencies, potential extreme events, high uncertainty with respect 
to data and modelling approach, and risk of change.” 
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Interpreted from the actuarial perspective, the traditional approach of quantify-
ing risk by frequency and severity of incidents, and combining them (potentially 
using an appropriate dependence structure) to obtain an aggregated loss distribu-
tion is complicated for cyber risk. We follow [25, 63] in summarizing the central 
properties of cyber risk:

•	 Absence of historical data: The novelty of this risk and the absence of an estab-
lished terminology for cyber incidents makes it difficult for insurers to create a 
reliable database with information on losses. This is exacerbated by a reporting 
bias, i.e. companies are often reluctant to reveal incidents in order to avoid repu-
tation damages.

•	 Dynamic risk type: Cyber risk is as non-stationary as the underlying technol-
ogy and legal framework, which makes the usability of past data for modelling 
future losses difficult. Among the main features that underscore the dynamic 
nature of cyber risk are the growing speed and scope of digital transformation, 
widening sources of vulnerability from hyperconnectivity, and the evolution of 
threat actors [2].

•	 Strategic threat actors: Cyber losses do not occur in a completely random 
fashion, as they are often caused by malicious actors with strategic (economic) 
motives and attack patterns. In 2018, Lewis [6] even described the trend of 
cybercrime as a service (CaaS) encompassing a large diversity and volume of 
cybercrime offerings, including products (e.g. exploit kits, custom malware) and 
services (e.g. botnet rentals). Around this, a thriving cybercrime economy has 
emerged from the related communities, offering for instance product develop-
ment and technical support.

•	 Interdependence/Accumulation risk: The interconnectedness of IT-systems 
and the often systemic nature of vulnerabilities induce a dependence structure 
within and across company networks and the potential for loss accumulation.

•	 Interdependence of security: Another result of the network interdependence 
are negative externalities regarding security, which within a game-theoretical 
context might lead to an equilibrium in which all companies underinvest in secu-
rity and, therefore, the overall network is not sufficiently protected.

•	 Difficult impact determination: Due to the intangible nature of information 
assets, it is often difficult to quantify the economic consequences of a cyber inci-
dent.

•	 Information asymmetry: Cyber insurance exhibits two sorts of information 
asymmetry: Adverse selection and moral hazard. The former refers to the chal-
lenge for an insurer to reliably determine a company’s risk exposure, the latter 
refers to the difficulty of ensuring the risk exposure to be maintained throughout 
the entire contract period.

As we focus on actuarial questions, we refrain from considering in more detail 
technological aspects of information security, the economics of cyber security and 
cybercrime, or the legal framework.

However, one important aspect to be mentioned concerns the role of governments 
and legislation. For example, in the European Union, the General Data Protection 
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Regulation (GDPR) came into force on May 25, 2018 with fines up to 20 €  million 
or 4% of annual global revenues, emphasizing that the respective legal framework 
must be considered when modelling the size of cyber insurance claims, as penalties 
and fines may be included in the coverage. Furthermore, besides setting the legal 
framework, Anchen [2] argued that the government could help to promote cyber 
resilience by reshaping incentives and increasing awareness of cyber threats.

3.2 � Cyber risk factors

So far, the term risk was used informally. Going further, we disintegrate risk into 
a combination of threat, vulnerability, and impact (c.f. Ref. [25]). A threat is the 
underlying root cause of the risk, which itself does not necessarily manifest as an 
incident, but is only harmful if there is a corresponding vulnerability in the target 
system. If a threat and an existing vulnerability lead to the occurrence of an incident, 
the impact refers to the consequences, which can be tangible (e.g. direct financial 
consequences) or intangible (e.g. loss of reputation). The process of risk manage-
ment classically consists of identifying risks by characterising threats, vulnerabili-
ties, and impacts, analysing risks with regards to the probability and impact of an 
incident and treating the estimated risks by selecting and applying adequate meas-
ures. As outlined in Ref. [25], there are four classical ways of dealing with risks: risk 
reduction, risk transfer, risk avoidance, and risk acceptance. Clearly, cyber insurance 
is a tool for risk transfer and a potential incentive for risk reduction.

3.2.1 � Threats

In order to assign cyber incidents to a few distinct classes, we recall a quite concise 
definition of cyber risk originally motivated by the study of operational risk man-
agement, namely “operational risks to information and technology assets that have 
consequences affecting the confidentiality, availability, or integrity of information or 
information systems.” [38].

We follow [37] in applying this definition to classify cyber incidents according to 
three classical information security protection goals: confidentiality, integrity, and 
availability of information assets [67]. Table 1 gives an overview of their definitions 
and the incident types that compromise each goal.

Of course, these categories are not mutually exclusive; an example combining 
features of fraud and business interruption is a Ransomware attack, i.e. extortion for 
temporarily withheld data. We nevertheless implement the above distinction, as it is 
known from data breaches that incidents of different kinds typically show a differ-
ent statistical nature [68] and, moreover, the economic consequences vary across the 
incident categories [55]. An incident falling into more than one class could e.g. be 
assigned partially to both of them according to the losses it entails, e.g. for the Ran-
somware case, losses from the interruption of operations under BI and losses from 
ransom payments under FR. Furthermore, we can understand FR as a general class 
of incidents that cannot be distinctly classified as DB or BI.
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Until a few years ago, data breaches have been the most observed type of inci-
dent, see Sect.  2.1. Recently, however, the potential impact from cyber-related BI 
has become a major concern [4] whose financial consequences could equal or sur-
pass losses from a data breach. Vice versa, cyber incidents have become the most 
feared BI trigger [12]. Our classification is quite similar to the definition of a cyber 
attack used in Ref. [13] which, however, only focuses on malicious cyber attacks. In 
our view, to capture the whole scope of cyber incidents, a second distinction along 
another dimension, namely the root cause, should be made.5 Here, the following 
should be distinguished:

•	 Targeted attacks: Malicious attacks that target one firm specifically due to its 
characteristics and assets. Usually, the attack vector is tailor-made to circumvent 
the company’s defense strategies.

•	 Individual failures: Non-malicious incidents at single firms that happen due to 
internal or external machine or system malfunction or human error.

•	 Untargeted attacks: Malicious attacks (from an external source) that do not tar-
get one firm specifically because of its characteristics, but are opportunistic in 
the sense that they attack many available targets—usually simultaneously.

•	 Mass failures: Non-malicious events that affect multiple entities simultaneously, 
such as the failure of a cloud service provider.

Combining incident types and root causes yields the partition of cyber incidents 
as shown in Table 2.6 Note that we use terminology that is common in the natu-
ral catastrophe context and is applied in the cyber context in Ref. [70]: an incident 
refers to a single loss, whereas an event can cause many related incidents.7

One can further scrutinize motives of individuals or groups for targeting compa-
nies via cyber attacks. CRO Forum [69] defines five types of threat actors (with cor-
responding motivation): nation states (strategic), organised criminals (economic), 
hackers (reputational), hacktivists (political), and insiders. The last group includes 
unintentional insiders, emphasizing that, although malicious attacks are more pub-
licly present, a large share of cyber incidents stems from human error or technical 

6  This categorisation also comprises classifications by other sources, e.g. Refs. [51, 55], the PRC data-
base, the database of Advisen (https://​www.​advis​enltd.​com/​data/​cyber-​loss-​data/) and the four incident 
types of Ref. [69].
7  Note that the common IT terminology of systemic vulnerabilities introduced in Sect.  3.2.2 is trans-
ferred directly to the terminology of systemic events used throughout this work. As this might be reminis-
cent of the term systemic risk used in the finance literature, let us already emphasize that we understand 
the risk from systemic events in the cyber context as neither the risk of a cascading failure of a whole 
industry nor a mixture of underlying, non-diversifiable market factors. Rather, we understand that sys-
temic vulnerabilities create common entry points for external threats to the system and therefore intro-
duce the potential for common external shocks to the whole portfolio or parts of it and thus multiple 
dependent, simultaneous loss occurrences.

5  To avoid confusion, the well-known classification of cyber risk by CRO Forum [69], which distin-
guishes four types of cyber incidents and four potential root causes, should be mentioned. In this work, 
we consider their classification’s root causes in the context of vulnerabilities and denote as root cause the 
actual origin of the incident.

https://www.advisenltd.com/data/cyber-loss-data/
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problems. This applies to cyber-related BI [4, 12], data breaches [5, 12], and general 
cyber incidents [3, 55, 56].

One peculiar type of targeted attacks not yet explicitly mentioned are so-called 
supplier attacks, where a company is not attacked directly but through attacks on 
supply-chain partners (with potentially weaker defenses). Although this so far only 
accounts for a minority of incidents, studies have identified a trend of attackers 
slowly shifting their attack patterns to exploit supply chain partner environments, 
particularly for industries with mature cybersecurity standards [3], and thus many 
companies will increasingly seek to extend insurance cover to their supply chains 
[4].

3.2.2 � Vulnerabilities and controls

Threats only manifest as successful incidents if there exists an exploitable vulner-
ability in the target system [36]. We distinguish between symptomatic and systemic 
vulnerabilities (c.f. Ref. [36, 71]), where the former only affect single firms (e.g. via 
custom software), while the latter can affect many firms simultaneously (e.g. via a 
vulnerability in standard software). Especially the second kind is worrisome, as it 
exposes many potential targets to the same threat and thus could lead to highly cor-
related and simultaneous losses [36]. From the viewpoint of a company, a vulner-
ability can be mitigated by establishing adequate controls, both technical (e.g. anti-
virus software) and non-technical (e.g. awareness campaigns [36]).

Investments in cyber security require strategic decisions and cannot be limited 
to the prevention of cyber incidents, but must also take into account the discov-
ery, investigation, and containment of an attack and the fast recovery of systems 
to a working state [3]. Many academic works have studied the problem of finding 
an optimal security level, balancing the cost of controls against the benefits from 
reduced losses (see Sect. 2.1). We do not further study this problem here, but rather 
conclude that a firm’s IT security level must be a central parameter for an insurance 
company’s risk assessment (as it already is in practice [15]).

Besides opportunistic attacks that stem from the opportunity of exploiting an 
existing vulnerability, we also consider targeted attacks on a specific victim. Thus, 
further firm characteristics that incentivise such attacks need to be identified. Con-
sidering the list of threat actors in the previous section, the following characteristics 
arise:

•	 Industry sector: Previous studies indicate that both the number and cost of 
cyber incidents depend on the industry [3, 5, 51, 52, 54, 55], with regulated 
industries such as healthcare and financial services suffering most. Wheatley 
et al. [54] mention that the industrial sector as a risk factor may serve as a proxy 
to identify relatively homogeneous subgroups of companies with respect to their 
frequency of interaction with consumers and the total volume of personal data 
they guard.

•	 Data: It is intuitive that indeed the amount and sensitivity of data handled by the 
company is a factor, as especially actors with economic motives will target com-
panies with a high amount of valuable data in order to maximize their economic 
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gain. In practice, this is already incorporated into insurance pricing via hazard 
weightings [15].

•	 Company size: Regarding the size of a company, there are different aspects to 
be considered: Large, publicly known companies are prime targets for threat 
actors with reputational motives, whereas SMEs are often worse protected due to 
budget constraints or their smaller awareness for cyber risks.

Eling and Wirfs [56] considered, among others, the company-specific covariates 
industry sector and size and found both of them to be highly significant for the fre-
quency of all kinds of cyber incidents in their model.

3.2.3 � Impact

Parallel to increasing occurrence rates, the economic consequences of various cyber 
incidents have recently become more severe, with BI and information loss having 
the highest monetary impact [3]. For data breach incidents, the average cost could 
be up to several million USD [5, 10], where the biggest financial consequence is 
found to be lost business. Quantifying the consequences of cyber incidents is dif-
ficult due to the scarcity of historical data and the various (intangible) types of costs. 
Nevertheless, earlier studies give some indications of cost drivers.

For data breaches, Ponemon Institute LLC [5] find the average cost per record 
to depend on the root cause (malicious attacks vs. system failures and human error) 
and the industry sector. The latter could be explained by the fact that the rate of lost 
customers and business depends on the industry, but also by considering the impact 
of regulation and litigation on breach cost causing highly regulated industries to suf-
fer larger losses [12]. An effect of the company size on the breach cost was reported 
in Refs. [53] and [55], who developed a model for the log-cost of a data breach 
depending on the firm’s revenue (as a proxy for size) and the number of compro-
mised records. This is more comprehensive than the well-known Jacob’s formula 
[72], which simply links the log-cost of a data breach to the (log-)number of com-
promised records. Another amendment was proposed in Ref. [52], who argue that 
[72] did not yet take into account the cost of mega data breaches observed in future 
years. Finally, adequate controls can not only decrease the probability of a breach, 
but also its potential consequences: Improvements in data governance programs, 
presence of incident response plans, and employee training all result in average cost 
savings in case of a breach [5, 60].

Concluding, there is evidence that for data breaches the cost of an incident 
depends on the industry sector, the size of the company, the amount of data affected, 
potentially the type of attack, and controls in place. The statistical findings and dis-
tributions used to model the severity of data breaches found in investigations of 
available databases have been summarized in Sect. 2.1. Note that these findings for 
data breaches might not necessarily translate to the other incident types, as different 
types of cyber incidents (e.g. data breaches and privacy violations) are found to dis-
play large median cost differences [55].

It is hard to find information on the economic impact of the other two types of 
incidents studied here, namely BI and fraud. For the former, some sources from the 
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non-cyber domain are available [73–77]. The only sources including indications of 
which distributions are useful to model economic loss from BI are [77], who finds 
that the size of yearly BI insurance claims follows a Pareto distribution with an 
extremely heavy tail and infinite expected claim size, and [75], who suggests model-
ling BI loss by a PERT distribution.

For fraud one might hope to find information in studies on the cost of cyber crime 
but, unfortunately, the data is usually either aggregated over all types of cyber inci-
dents from malicious sources or focuses on information loss/theft. Thus, there is 
very little reliable evidence on the actual cost of cyber fraud. Despite indications 
that cyber risk is quite different from other types of operational risk [56], one way 
might be to draw on knowledge about the modelling of operational risk as, e.g. the 
Basel II framework [78] includes internal fraud and external fraud as event-type 
categories.

Another option is to refer to the recent work of [56], who study all kinds of cyber 
incidents (including data breaches as a subset) using a model where the parameters 
of the distribution of both frequency and severity of cyber incidents might depend 
on firm-specific and incident-specific covariates as well as time. They resort to an 
EVT approach to model the severity of events, using the generalized Pareto distribu-
tion (GPD) to model excesses over a high threshold (the tail of the distribution) and 
a series of simple parametric distributions (e.g. exponential, Gamma, log-normal) 
for the body. The GPD with shape parameter � and scale parameter � is of the form

for x ≥ 0 if � ≥ 0 and x ∈ [0,−�∕�] if 𝜉 < 0 . They build on the work of [57] to fit a 
model where the parameters of the GPD may depend on covariates (including time). 
To the best of our knowledge, their work is the first to model the actual economic 
loss and to consider general types of cyber incidents instead of only data breaches, 
thus we incorporate their approach in our framework.

3.3 � Properties of a cyber risk model

Before proposing a model for cyber risk, we shortly summarize the properties/styl-
ized facts it should possess given the findings from this chapter:

•	 Different types of incidents (DB, BI, and FR/general incidents) should be distin-
guished.

•	 The model should include idiosyncratic incidents and systemic events, where 
both categories can include malicious and non-malicious causes. Systemic events 
stemming from common vulnerabilities are particularly worrisome as they entail 
accumulation risk.

•	 Companies should be viewed as heterogeneous, as their exposure and resilience 
to cyber threats depends on their characteristics. The most relevant such charac-

GPD�,�(x) =

⎧⎪⎨⎪⎩

1 −
�
1 +

�

�
x
�−1∕�

, if � ≠ 0,

1 − exp
�
−

x

�

�
, if � = 0,
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teristics are the industry sector, the company size, the data handled by the com-
pany, and its IT security level.

•	 The model should be able to capture the dynamic nature of cyber risk, as occur-
rence rates as well as impact of cyber incidents may change over time.

4 � Actuarial model

Considering cyber risk a combination of threat, vulnerability, and impact, from an 
actuarial viewpoint it remains to translate this understanding into modelling fre-
quency and severity of losses within a portfolio. After doing so in Sects. 4.2 and 4.3, 
in Sect. 4.4 we address actuarial questions, before illustrating the model in a simula-
tion study in Sect. 5. Note that the proposed model is purposefully constructed in a 
modular way, as some of the assumptions and parameter choices might be updated 
in the future once suitable data is available. Moreover, a user who wants to incorpo-
rate properties of an internal data set can refine individual features of the model (or 
replace parts) without changing the overall structure.

4.1 � Insurance portfolio

Consider K firms, labeled {1,… ,K} , constituting the portfolio of an insurance com-
pany exposed to losses due to cyber incidents (idiosyncratic or caused by systemic 
events). This typically refers to losses covered by stand-alone cyber policies, but 
might in some cases include losses that still fall under traditional policies for some 
insurers (note that a trend towards the elimination of cyber exposure in traditional 
business is observed, hopefully leading to a clear-cut distinction in the future). Fol-
lowing the findings of Sect. 3, we assume that for each company included into the 
insurer’s portfolio, information about relevant covariates is collected via a question-
naire and public information. Table 3 gives an overview of the characteristics we 
identified as relevant, the potential to elicit the necessary information from public 
data or a firm’s voluntary disclosure, and a suggestion for their inclusion in a math-
ematical model.8 Thus, for each firm j ∈ {1,… ,K} , the vector of covariates

is known, yielding a K × 5 covariate matrix

(1)xj = (xj1,… , xj5)
� = (bj, sj, dj, cj, nsupj)

�,

8  We do not claim this list to be exhaustive but stress that all required information can be objectively 
collected by an insurer. For example, one could argue that for an insurer with a world-wide portfolio, 
information on a firm’s location (jurisdiction) should be added as it might influence the severity (e.g. via 
fines to be paid following a data breach) as well as, for targeted attacks, the frequency (as data from some 
countries might be more valuable and therefore a more frequent target) of cyber losses.
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where each row corresponds to one firm in the portfolio and each column to one of 
the above covariates in the order given in Eq. (1). We assume for notational conveni-
ence that all firms are ordered by sector, i.e. suppose there are B sectors and 
Kb̂, b̂ ∈ {1,… ,B}, such that firms in sector b̂ exactly correspond to indices 
i ∈ Ib̂ ∶= {1 +

∑b̂−1

�=1
K� ,… ,Kb̂ +

∑b̂−1

�=1
K� =

∑b̂

�=1
K�} ⊆ {1,… ,K} , where ∑0

�=1
= 0 . This implies that there are exactly Kb̂ firms in each sector b̂ and 

K =
∑B

b̂=1
Kb̂ . Additionally, we denote the ordered values of the fourth column of � 

as (c[k])k∈{1,…,K} and additionally define c[0] = 0 and c[K+1] = 1.9 Analogously, for 
each sector b̂ ∈ {1,… ,B} , denote the Kb̂ ordered values of (ci)i∈Ib̂ as (cb̂

[kb̂]
)kb̂∈{1,…,Kb̂}

 , 
and additionally set cb̂

[0]
= 0 and cb̂

[Kb̂+1]
= 1 . Thus, on the whole portfolio

and on each sector b̂ ∈ {1,… ,B}

4.2 � Loss frequency

We will use the framework of point processes to model the arrival of cyber inci-
dents. This allows to naturally incorporate time- and covariate-dependence of the 
incident frequency and to distinguish between different types of incidents. A com-
prehensive overview on point processes is given in Refs. [79, 80], whose notation 
we use. In the following, all random variables are defined on a suitable probability 
space (Ω,F,ℙ) , where Ω is the state space, F  a �-algebra on Ω , and ℙ a probability 
measure on (Ω,F) . For our purposes, we focus on simple point processes on the 
non-negative real line, i.e. processes on the state space [0,∞) interpreted as time, 
whose corresponding counting process (N(t))t≥0 =

(
|{i ∈ ℕ ∶ ti ∈ [0, t]}|

)
t≥0 has 

unit increments, where | ⋅ | denotes the cardinality, i.e. the number of elements, of a 
set.

We recall Table 2 for a classification of cyber incidents according to their inci-
dent type and root cause: Idiosyncratic incidents (targeted attacks and individual 
failures) are discussed in the next section, systemic events (untargeted attacks and 
mass failures) are addressed subsequently.

� =

⎛
⎜⎜⎝

x�
1

⋮

x�
K

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

x11 ⋯ x15
⋮ ⋱ ⋮

xK1 ⋯ xK5

⎞
⎟⎟⎠
,

0 = c[0] ≤ c[1] ≤ … ≤ c[K] ≤ c[K+1] = 1,

0 = cb̂
[0]

≤ cb̂
[1]

≤ … ≤ cb̂
[Kb̂]

≤ cb̂
[Kb̂+1]

= 1.

9  Ties can be ordered arbitrarily.
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4.2.1 � Idiosyncratic incidents

Idiosyncratic incidents are assumed to occur at each firm independently (from inci-
dents at other firms as well as between types of incidents at the same firm). For 
these types of incidents, we assume that any incident is successful in the sense that it 
breaches the firms IT security measures and causes a loss. This is reasonable, given 
that targeted attacks are usually tailor-made against one company and furthermore, 
the majority of non-successful incidents (near misses) of this type might not be 
monitored or recognized.10

We assume the arrival of such incidents of each type {DB, BI, FR} at each firm 
j ∈ {1,… ,K} to follow an inhomogeneous Poisson process with time- and covari-
ate-dependent rate

where the super-/subscript ⋅ stands for one of the incident types ⋅ ∈ {DB,FR,BI} , 
the functions f⋅ additively map (a relevant subset of) the covariates, i.e. 
f⋅(x) = ��,⋅ +

∑
k f�,⋅,k(xjk) for some constant ��,⋅ and g⋅ ∶ [0, T] → ℝ is a measurable 

function describing the time dependence. The explicit form of the functions f⋅ and 
g⋅ is of course unknown but can be estimated from a suitable data set.11 The depend-
ence on covariates and time can differ for the three incident types. As an example, 
if one assumes the rate of data breaches to depend on the covariates xj3 (data; for 
targeted attacks), xj4 (IT security; for failures), and xj5 (number of suppliers; for sup-
plier attacks) only, this would yield

where the functions f�,DB,k map factor levels to constants for the ordinal covariates 
indexed k ∈ {3, 5} (i.e. are naturally measurable) and f�,DB,4 is any measurable func-
tion of the numerical covariate xj4.

It is clear that for any interval [𝜏1, 𝜏2] ⊆ [0,∞) (set for now �1 ∶= 0 and �2 =∶ T  ), 
given the covariate matrix � , the number of idiosyncratic incidents of each type 
arriving at firm j follows a Poisson distribution:

(2)�⋅,idio(xj, t) = exp
(
f⋅(xj) + g⋅(t)

)
,

(3)
log

(
�DB,idio(xj, t)

)
= f�DB,idio (xj3, xj4, xj5) + g�DB,idio (t)

= ��,DB +
∑

k=3,4,5

f�,DB,k(xjk) + g�DB,idio (t),

10  As we assume these attacks to occur due to the firm’s characteristics, one might ask if a firm has to 
simply take its exposure to these types of threats as given. For the occurrence rate of malicious targeted 
attacks this might be true, but we assume that the impact of a successful attack can be limited by ade-
quate measures (see Sect. 4.3). Furthermore, putting security measures in place mitigates the occurrence 
of individual failures and potentially implicitly deters targeted attacks as attackers would have to invest 
more resources to devise an attack vector.
11  As this ansatz constitutes a standard generalized additive model, techniques for parameter estimation 
are readily available, see, e.g. Ref. [81]. Using the statistical software R, such models can be fit with the 
function gam(...,family=poisson) from the package mgcv.
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where Λ⋅,idio

j
(T) = ∫ T

0
�⋅,idio
j

(t)dt is the mean measure of the inhomogeneous Poisson 
process.

As the processes are assumed independent between firms, it follows by superpo-
sition that the number of idiosyncratic incidents on the whole portfolio is also Pois-
son distributed:

4.2.2 � Systemic events

Systemic events cause incidents at multiple firms at the same time and, if of mali-
cious origin, are typically of an opportunistic nature, i.e. a set of firms is affected 
not because of their specific features or the economic gain attainable from attack-
ing them, but rather due to the availability of an exploitable attack vector against 
them. This often stems from a common vulnerability, for example a list of bought 
e-mail-addresses that allows a threat actor to send ransomware to employees of cer-
tain firms. In many cases, a common vulnerability would likely affect firms within 
one industry sector (e.g. if custom software is vulnerable), but of course the com-
mon factor can also be unobservable. In any case, to model incidents from systemic 
events, an extension of the simple point process framework of the previous section 
is needed. We use the framework of marked point processes, where the process of 
locations (arrival timepoints of events), now called the ground process Ng(⋅) , is a 
simple12 point process {ti}i∈ℕ on the non-negative real line as above, more specifi-
cally a non-homogeneous Poisson process with log-rate13

where the super-/subscript ⋅ indicates the event type ⋅ ∈ {DB,FR,BI} , and again g⋅ 
is a measurable function of time. Each arrival of the ground process {ti}i∈ℕ is then 
equipped with a mark (mi, Si) ∈ M × S consisting of realisations of components 
mi ∈ M ∶= [mmin,mmax]

w.l.o.g.
= [0, 1] and Si ∈ S ∶= PK , such that the resulting pro-

cess is a marked point process 
{
ti, (mi, Si)

�
}
i∈ℕ

 on [0,∞) × (M × S) , where M × S 
is called the mark space (for a rigorous definition, see Definition 1 in Online Appen-
dix A.1).

∀j ∈ {1,… ,K} ∶ N
⋅,idio

j
(T) ∼ Poi

(
Λ⋅,idio

j
(T)

)
,

K∑
j=1

N
⋅,idio

j
(T) = N ⋅,idio(T) ∼ Poi

(
Λ⋅,idio(T)

)
, where Λ⋅,idio(T) = ∫

T

0

( K∑
j=1

�⋅,idio
j

(t)
)
dt.

(4)log
(
�⋅,g(t)

)
= g�⋅,g(t),

12  As remarked in Ref. [79], by suitably redefining the marks, any marked point process can be repre-
sented as a marked point process on the same state space with a simple ground process Ng.
13  Of course, the log-link is superfluous in this case and might even seem a bit artificial. However, we 
decide to use this formulation in order to keep consistent with the previous section, especially as we will 
see the results from both sections being treated jointly later on.
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Remark 1  (Interpretation of mark components)  

1.	 mi ∈ M = [0, 1] describes the strength of an event, where strength can be under-
stood e.g. as effectiveness to overcome IT security measures.14 This is useful to 
include, as in reality a wide range of sophistication of attacks exists and capturing 
their strength allows to quantify the effectiveness of IT security measures and the 
sensitivity of the expected loss to their improvement.

2.	 Si ∈ S = PK encodes the subset of the portfolio affected by an event.

The two components of the mark are used jointly to determine which firms suf-
fer a loss from a given event, namely those firms included in the affected subset 
whose security level is lower than the strength of the event. With the above nota-
tion, an event 

(
ti, (mi, Si)

�
)

–	 arrives at time ti,
–	 reaches exactly the firms 

{
j ∈ Si

}
 , and

–	 causes a loss in exactly the firms 
{
j ∈ S∗

i

}
∶=

{
j ∈ Si, cj < mi

}
.

To characterize a marked point process completely, it remains to specify the 
conditional distribution of the marks, given the locations of the Poisson ground 
process Ng (see Proposition 6 in Online Appendix A.1). This is done in the fol-
lowing assumptions whose rationality will be detailed below:

Assumption 1  (Conditional mark distribution)  

	(A1)	 The joint mark distribution is independent of the location t ∈ [0,∞) and the 
marks {(mi, Si)

�}i∈ℕ are independent and identically distributed (iid.).
	(A2)	 The two mark components {mi}i∈ℕ and {Si}i∈ℕ are independent, where the 

distribution of mi is given by the cdf FM (with pdf fM ) and the distribution of 
Si is given by a (discrete) pmf fS.

	(A3)	 mi follows a continuous Uniform distribution on M = [0, 1].
	(A4)	 The distribution of Si is generated by distinguishing between general and sector-

specific events. Given the event type, firms in the relevant subset are affected 
with identical probability and independently from each other. More specifically, 
assume there are r.v. Zij ∈ {0, 1} – such that {j ∈ Si} ⟺ Zij = 1 – whose dis-
tribution depends on independent r.v. Gi ∼ Ber(pG) and Bi following some cat-
egorical distribution on {1,… ,B} with probability {p1,… , pB} ( Gi determines 
whether the event is sector-specific ( Gi = 1 ) or general ( Gi = 0 ); Bi determines 
the affected sector in the former case). Then let 

14  For example, a simple phishing e-mail that would immediately be classified spam is rather weak, 
whereas a sophisticated exploit designed to circumvent state-of-the-art security systems is rather strong.
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 Of course, pG, psec, pgen ∈ [0, 1] and pb ∈ [0, 1], ∀b ∈ {1,… ,B} , s.t. ∑
pb = 1 . We exclude the cases pG = pgen = 0 and (1 − pG) = psec = 0 , which 

lead to the uninteresting case ℙ(Si = �) = 1.

A concrete distributional assumption for a model should ideally be backed by 
empirical evidence. As this is currently not possible due to data scarcity in the cyber 
domain, we stick to the principle of imposing as little (unknown) prior information 
as possible. This justifies (A1) and (A2), as we do not have any evidence that would 
suggest deviating from iid., to introduce any particular dependence, neither between 
locations and marks, nor between the components of the mark. Similarly, regarding 
(A3), one might intuitively rather assume the number of very weak attacks (such 
as easily recognizable spam e-mails) to be higher than the number of very sophis-
ticated attacks. However, as we do not have statistical evidence that would allow to 
choose a particular distribution, we use a Uniform distribution (maximum entropy 
distribution among all continuous distributions on a bounded interval [82]). Con-
sidering (A4), several industry experts have highlighted in conversations with us the 
importance of industry sector-specific systemic events. Thus, we incorporate this 
idea in our model, while again leaving the distribution as simplistic as possible (con-
ditionally iid. Bernoulli draws). Furthermore, note that due to the modular structure 
of the model, each assumption can be altered or replaced individually if suitable 
data indicates the necessity, without compromising the general model structure.

4.2.3 � Properties of the model

In the following, we detail properties of the model and their interpretation in the 
cyber insurance context. As proofs mostly rely on standard techniques, they are 
given in Online Appendix A.3.

Proposition 1  (Distribution of number of incidents and losses) Under (A4), the 
number of incidents per event {|Si|}i∈ℕ follows a Binomial mixture distribution, i.e. 
f|Si||n,p(k) = Binom(n, p, k) with

Similarly, under (A3) and (A4), the number of losses per event {|S∗
i
|}i∈ℕ follows a 

Binomial mixture distribution, i.e. f|S∗
i
||n,p(k) = Binom(n, p, k) with

ℙ(Zij = 1 | Gi = 0) = pgen iid. ∀j ∈ {1,… ,K},

ℙ(Zij = 1 | Gi = 1,Bi = b̂) =

{
psec iid. ∀j ∈ Ib̂,

0 else.

(5)(n, p) =

{
(K, pgen) with weight (1 − pG),

(Kb̂, psec) with weight pG pb̂, b̂ ∈ {1,… ,B}.

(6)

(n, p) =

{
(K∗, pgen) with weight (1 − pG) (c[K∗+1] − c[K∗]), K∗ ∈ {0,… ,K},

(k∗
b̂
, psec) with weight pG pb̂ (c

b̂
[k∗

b̂
+1]

− cb̂
[k∗

b̂
]
), k∗

b̂
∈ {0,… ,Kb̂}, b̂ ∈ {1,… ,B}.
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Notice that the distribution of {|S∗
i
|}i∈ℕ implies the distribution of {|Si|}i∈ℕ as the 

special case where c[k] = 0,∀k ∈ {1,… ,K} , i.e. the worst-case scenario where no 
firm has any IT security measures in place and thus the number of incidents and 
losses is equivalent.

Proposition 2  (Conditional incident and loss probability) For a firm j1 ∈ {1,… ,K} 
in sector bj1, the probability of being affected by an event, given the information that 
another firm j2 ∈ {1,… ,K} in sector bj2 has been affected (i.e. the conditional inci-
dent probability), is given by

P(j1 ∈ Si | j2 ∈ Si) =






p2sec pbj2 pG + p2gen (1− pG)
p̃(bj2)

, bj1 = bj2 , (7a)

p2gen (1− pG)
p̃(bj2)

, bj1 �= bj2 , (7b)

 where

is the (unconditional) incident probability for each firm, given its industry sector.

Likewise, for the conditional loss probabilities,

P(j1 ∈ S∗
i | j2 ∈ S∗

i ) =






p2sec pbj2 pG + p2gen (1− pG)
p̃(bj2)

, bj1 = bj2 , cj1 ≤ cj2 , (9a)

p2gen (1− pG)
p̃(bj2)

b, j1 �= bj2 , cj1 ≤ cj2 , (9b)

F̄M (cj1)
F̄M (cj2)

(p2sec pbj2 pG + p2gen (1− pG)
p̃(bj2)

)
, bj1 = bj2 , cj1 > cj2 , (9c)

F̄M (cj1)
F̄M (cj2)

(p2gen (1− pG)
p̃(bj2)

)
, bj1 �= bj2 , cj1 > cj2 , (9d)

 where the unconditional loss probability is given by

The above results are interesting from a practical viewpoint: If an insurer is noti-
fied about a cyber incident by one of its policyholders (many policies include man-
datory immediate notification or even the provision of an immediate-response-team 

(8)p̃(bj) ∶= ℙ(j ∈ Si | bj) = pG pbj psec + (1 − pG) pgen

(10)ℙ(j ∈ S∗
i
| bj) = F̄M(cj)

(
pG pbj psec + (1 − pG) pgen

)
= F̄M(cj) p̃(bj).
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by the insurer), it is worthwhile to find (and warn!) firms with a high conditional 
probability of having been affected by the same event, thus potentially giving them 
the chance to avert the actual manifestation in their firm (e.g. by warning employees 
about a phishing threat or updating vulnerable software). The information about an 
incident in one firm always has a non-negative effect on the incident probabilities for 
other firms of the same sector ((7a) vs. (8); a formal proof of this statement is given 
in Online Appendix A.3), while the effect can go in either direction for firms of dif-
ferent sectors ((7b) vs. (8)). For a detailed illustration, see Fig. 1. The same holds for 
the information of a suffered loss, i.e. the probability of suffering a loss increases 
with the knowledge that another firm of the same sector has suffered a loss, and the 
increase is larger if the harmed firm’s IT security level exceeds the one of the firm 
under consideration.

Analogously to the notation in the previous section, for any interval 
[0, T] ⊆ [0,∞) , given the arrival process 

{
ti, (mi, Si)

�
}
i∈ℕ

 and the covariate matrix � , 
the number of incidents N̄ ⋅,syst

j
 resp. losses N⋅,syst

j
 at each firm follows a Poisson pro-

cess, where the rate can be obtained by thinning the ground process N⋅,g of arrivals 
{ti}i∈ℕ appropriately (see Ref. [83] and Proposition 5 in Online Appendix A.1). In 
particular

Contrary to the previous section, we cannot transition to the portfolio level by sim-
ple superposition due to lack of independence between firms. Instead, we express 
the cumulative number of incidents N̄ ⋅,syst(T) resp. losses N⋅,syst(T) across the entire 
portfolio for fixed T > 0 as a compound Poisson distributed r.v.

where N⋅,g(T) ∼ Poi
( ∫ T

0
�⋅,g(t)dt

)
 and {|Si|}i∈ℕ resp. {|S∗

i
|}i∈ℕ are iid. mixed Bino-

mial and independent from N⋅,g(T).15 Using well-known results for the calculation of 
the expectation and variance of a compound Poisson r.v. (details in Refs. [84, 85] 
and Online Appendix A.2), this yields:

Proposition 3  (Overdispersion of systemic incident/loss numbers) Assume K > 1 
and Kb̂ > 1 for at least one b̂ ∈ {1,… ,B} with pb̂ > 0. Then, the cumulative number 

N̄
⋅,syst

j
(T) =

N⋅,g(T)∑
i=1

�{j∈Si}
∼ Poi

(
p̃(bj)Λ

⋅,g(T)
)
,

N
⋅,syst

j
(T) =

N⋅,g(T)∑
i=1

�{j∈S∗
i
} ∼ Poi

(
p̃(bj)F̄M(cj)Λ

⋅,g(T)
)
.

N̄⋅,syst(T) =

N⋅,g(T)∑
i=1

|Si| and N⋅,syst(T) =

N⋅,g(T)∑
i=1

|S∗
i
|,

15  The notation N̄ and N alludes to the fact that the number of incidents can always be considered a 
worst-case bound for the number of losses (counterfactual analysis: what had happened if no security 
was in place at all); in particular, for a given realisation {ti, (mi, Si)}i∶ti∈[0,T] always N̄⋅,syst(T) ≥ N⋅,syst(T).
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(a)

(b)

Fig. 1   We illustrate the effect of the information that a firm of the same (resp. a different) sec-
tor has been affected by an event on the incident probability for just two sectors. (a) shows the (un)
conditional probabilities for a firm from sector 1 dependent on p1 . The other parameters are cho-
sen as pG = psec = pgen = 0.5 (thin lines) or pG = 0.5, psec = 0.2, pgen = 0.8 (thick lines), such that 
one observes that for bj1 ≠ bj2 , the conditional probabilities can be above or below the unconditional 
one (solid line), whereas for bj1 = bj2 , the conditioning has a non-negative effect in both cases. Like-
wise in (b), for pG = 0.5, pgen = 0.5, p1 = 1 − p2 = 0.75 , probabilities for all cases are shown depend-
ent on psec . Observe again that conditioning on the same sector has a non-negative effect, whereas 
when conditioning on the other sector, there is an intersection ℙ(j1 ∈ Si) = ℙ(j1 ∈ Si | j2 ∈ Si) (and 
ℙ(j2 ∈ Si) = ℙ(j2 ∈ Si | j1 ∈ Si) ) at psec = 0.4305
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of incidents resp. losses from systemic events is overdispersed, i.e. has a dispersion 
index (DI = variance-to-mean ratio) exceeding 1.

It is well-known that the Poisson distribution exhibits equidispersion ( DI = 1 ), 
while empirical studies in non-life insurance often report overdispersed claim count 
data and therefore recommend to use alternative distributions (e.g. negative Bino-
mial) to model claim counts. Proposition 3 shows that our construction using a 
marked Poisson process to allow simultaneous arrivals of several incidents (resp. 
losses) due to one systemic event likewise is able to introduce overdispersion.

4.2.4 � Summary: loss frequency model

Recall that idiosyncratic incidents arrive to each firm j ∈ {1,… ,K} independently 
as inhomogeneous Poisson processes with rates �⋅,idio

j
(t) , ⋅ ∈ {DB,FR,BI} . Each 

incident is assumed to cause a loss. For a fixed time T > 0 , the overall number of 
losses caused by idiosyncratic incidents up to this time N⋅,idio(T) follows a Poisson 
distribution with rate Λ⋅,idio(T) = ∫ T

0

�∑K

j=1
�⋅,idio
j

(t)
�
dt.

Systemic events arrive to the portfolio with overall rates �⋅,g(t) . Each arrival ti car-
ries a mark including the strength of the event mi and the affected subset Si . An event 
at time ti thus causes incidents in all firms in the set {j ∈ Si} and causes losses in its 
subset {j ∈ S∗

i
} =

{
j ∈ Si, cj < mi

}
 . The total number of incidents and losses from 

systemic events up to time T > 0 , N̄ ⋅,syst(T) resp. N⋅,syst(T) , follow a compound Pois-
son distribution with mixed Binomial jump sizes.

Aggregating the number of incidents and losses from both root causes on the 
level of each individual firm translates to aggregating two independent Poisson r.v.

On the portfolio level, we aggregate two independent compound Poisson r.v. (one 
with jumps of constant size 1 and one with mixed Binomial jump sizes), which 
yields (see Proposition 7 in Online Appendix A.2):

where N(T) ∼ Poi
(
Λ⋅,idio(T) + Λ⋅,g(T)

)
 and {Yi}i∈ℕ are iid., independent of N(T), 

with mixture distribution

DI
�
N̄ ⋅,syst(T)

�
∶=

�ar
�
N̄ ⋅,syst(T)

�

�
�
N̄ ⋅,syst(T)

� = 1 +
(1 − pG) p

2
gen

(K2 − K) + pG p2
sec

∑B

𝓁=1
p𝓁(K

2

𝓁
− K𝓁)

(1 − pG) K pgen + pG psec
∑B

𝓁=1
p𝓁 K𝓁

> 1,

DI
�
N ⋅,syst(T)

�
= 1

+
(1 − pG)

∑K

k∗=0
p2
gen

((k∗)2 − k∗)(c[k∗+1] − c[k∗]) + pG
∑B

𝓁=1

∑K𝓁

k∗
𝓁
=0

p2
sec
p𝓁((k

∗
𝓁
)2 − k∗

𝓁
)(c𝓁

[k∗
𝓁
+1]

− c𝓁
[k∗

𝓁
]
)

(1 − pG)pgen
∑K

k∗=0
k∗(c[k∗+1] − c[k∗]) + pGpsec

∑B

𝓁=1

∑K𝓁

k∗
𝓁
=0

p𝓁k
∗
𝓁
(c𝓁

[k∗
𝓁
+1]

− c𝓁
[k∗

𝓁
]
)

> 1.

(11)
N⋅

j
(T) ∶= N

⋅,idio

j
(T) + N

⋅,syst

j
(T) ∼ Poi

(
Λ⋅,idio

j
(T) + p̃(bj)F̄M(cj)Λ

⋅,g(T)
)
=∶ Poi

(
Λ⋅

j
(T)

)
.

(12)N⋅(T) ∶= N ⋅,idio(T) + N ⋅,syst(T)
d
=

N(T)∑
i=1

Yi,



59

1 3

A comprehensive model for cyber risk based on marked point…

Note that so far, we have kept the numbers of losses of different types {DB, FR, BI} 
separate. In general, assuming independence between them, they could be aggre-
gated into one arrival process, but this may not be desirable as also the loss severity 
distributions might be different (see Sect. 3.2.3), and therefore for the determination 
of the portfolio loss their numbers have to be taken into account separately.

4.3 � Loss severity

After describing the model of the cumulative number of cyber incidents and losses 
in the last section, we now turn to their impact, i.e. let Lij ∶= Lj(ti) be a r.v. describ-
ing the non-negative monetary loss caused by a cyber incident reaching firm 
j ∈ {1,… ,K} at time ti ∈ [0, T] . Based on previous findings from academic litera-
ture and the arguments in Sect. 3.2.3, we model the body and tail of the loss severity 
distribution separately and allow the parameters of the distributions to exhibit time- 
and covariate-dependence. Specifically, for all types of incidents, we suggest using a 
combination of log-normal and generalized Pareto distribution based on the findings 
of Ref. [56]. Other promising approaches (e.g. based on Refs. [49] and [72] for DBs 
or based on Ref. [75] for BIs) are detailed in Online Appendix A.4.

As we do not rely on empirical data, we first need to set a threshold between body 
and tail of the to-be-constructed distribution. Therefore, we first assume an underly-
ing log-normal distribution L̃⋅

ij
∼ LN(�⋅

ij
, �⋅) and select a high quantile as threshold, 

e.g. set u⋅
ij
= qz(L̃

⋅

ij
) with e.g. z = 0.95 . Given the threshold, construct the density fL⋅

ij
 

of the loss distribution as16

where TruncLN(�, �, xmin, xmax) denotes a truncated log-normal distribution on the 
interval [xmin, xmax] and GPD(u, �, �) denotes a generalized Pareto distribution with 

FYi
(n) =

Λ⋅,idio(T)

Λ⋅,idio(T) + Λ⋅,g(T)
𝟙[1,∞)(n) +

Λ⋅,g(T)

Λ⋅,idio(T) + Λ⋅,g(T)
F|S∗

i
|(n), n ∈ ℕ0.

(13)

fL⋅
ij
(l) =

{
z fTruncLN(l;�

⋅

ij
, �⋅, 0, u⋅

ij
), l ∈ [0, u⋅

ij
],

(1 − z) fGPD(l;u
⋅

ij
, �⋅

ij
, � ⋅

ij
), l ∈ (u⋅

ij
,∞),

�⋅

ij
= ��,⋅ +

∑
k

f�,⋅,k(xjk) + g�,⋅(ti),

�⋅
ij
= ��,⋅ +

∑
k

f�,⋅,k(xjk) + g�,⋅(ti),

� ⋅
ij
= f�,⋅(xj, ti),

16  Note that when fitting a spliced severity distribution as below, in order to apply established fitting pro-
cedures, one would usually select a global, non-covariate-dependent threshold u and fit each distribution 
onto the data that fall into the “globally” specified regions. As we do not address the question of model 
fitting here, we stick to the more general formulation, as it is interesting to assume that depending on the 
covariates, the classification of a severity as extreme should start at different levels.
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location u, shape � , and scale �.17 As for the idiosyncratic frequency modelling illus-
trated in Sect. 4.2.1, the sum might run over different subsets of covariates for differ-
ent incident types (see e.g. Eq. (3)).

Next, we combine the concepts for frequency and severity modelling to study 
some questions that arise from an actuarial viewpoint.

4.4 � Insurance pricing and risk measurement

Recall that we take the perspective of an insurer, whose portfolio consists of K firms 
exposed to cyber losses whose frequency and severity are modelled as detailed in 
Sects. 4.2 and 4.3. Questions of interest for the insurer when setting up a portfolio of 
cyber insurance policies typically include: 

1.	 Contract design (deductibles, cover limits, coverage period);
2.	 Pricing of individual policies given an applicant’s characteristics;
3.	 Estimation and quantification of the portfolio risk.

In this work, we do not elaborate in detail on the first question and for now assume 
no deductible, no cover limit, and a standard policy duration of one year. These 
assumptions imply that for each incident, the loss suffered by the insured firm and 
the claim size faced by the insurer are equal and the terms will be used interchange-
ably. To study the latter two questions, the total claim amount process is denoted

where it is assumed that the claim number process (N(t))t≥0 is independent of the 
iid., a.s. positive, claim size sequence {Yi}i∈ℕ . We restrict our focus to the case of 
fixed T > 0 , i.e. instead of studying the process (L(t))t≥0 , study the random variable 
L(T). In general, it is very hard to make statements about the exact distribution of L 
and one has to resort to Monte Carlo methods or, if applicable, a numerical routine 
like the Panjer recursion.

In our context, the loss for a firm j ∈ {1,… ,K} up to time T > 0 from one type of 
cyber incidents (e.g. data breaches) can be expressed as

L(t) =

N(t)∑
i=1

Yi, t ≥ 0,

L⋅
j
(T) =

N⋅

j
(T)∑

i=1

L
⋅,(j)

i
,

17  Note that when fitting a GPD with covariate-dependent parameters using the method developed in 
Ref. [57], an orthogonal reparametrization (�(xj, t), �(xj, t)) ∶= (�(xj, t), log(�(xj, t)(1 + �(xj, t)))) is cho-
sen. The resulting MLE 𝜈̂ can be transformed back directly to an estimator 𝛽  , but the dependence of � 
on the covariates does then not follow a GAM structure anymore. Therefore, a more general functional 
relationship is stated above.
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where N⋅

j
(T) ∼ Poi

(
Λ⋅

j
(T)

)
 as given in Eq. (11) and {L⋅,(j)

i
}i∈ℕ ∶= {Y ⋅,(j)(ti)}i∈ℕ with 

pdf. fL⋅
ij
 as given in Eq. (13). Note that in general the sequence {L⋅,(j)

i
}i∈ℕ is not iid. 

(due to time-dependence). However, if we drop time-dependence, which in practice 
could mean assuming constant severity distributions on one-year intervals consid-
ered separately, L⋅

j
(T) is again compound Poisson, and the total cyber loss incurred 

by firm j ∈ {1,… ,K} is given by

The portfolio loss is simply given by the sum of (dependent) firm losses, i.e.

Regarding the second question of finding a premium Π(T) for an individual insur-
ance policy on [0,  T], we recall the well-known premium calculation principles 
listed below [86]. As it is often impossible to find the exact distributional properties 
of the total claim amount process, the ones based on the first two moments are popu-
lar in practice.

–	 Expected value principle: Πj(T) = (1 + �)�
[
Lj(T)

]
 , with safety loading 𝜌 > 0.

–	 Standard deviation principle: Πj(T) = �
[
Lj(T)

]
+ �

√
�ar

(
Lj(T)

)
 , where 𝜌 > 0.

–	 Exponential principle: Πj(T) =
1

�
log

(
�[e�Lj(T)]

)
 , with risk aversion 𝛾 > 0.

Concerning the question of quantifying the risk of the overall portfolio loss, the two 
most common tail risk measures are the Value-at-Risk (VaR) at a given confidence 
level 1 − � and, if applicable, the corresponding Average Value-at-Risk (AVaR). The-
oretically, for a positive loss r.v. L with cdf FL , they are given by

where F−1
L

 denotes the generalized inverse of FL and (∗) requires FL to be continu-
ous. Note that in cases with very heavy-tailed loss severities (as e.g. observed in 
some of the previous works on cyber risk), AVaR(L) cannot be computed as it relies 
on L to have finite expectation.

Lj(T) =

Nj(T)∑
i=1

L
(j)

i
, where Nj(T) ∼ Poi

(
ΛDB

j
(T) + ΛFR

j
(T) + ΛBI

j
(T)

)
,

and F
L
(j)

i

=
∑

y∈{DB,FR,BI}

Λ
y

j
(T)

ΛDB
j
(T) + ΛFR

j
(T) + ΛBI

j
(T)

F
L
y,(j)

i

.

L⋅(T) =

K∑
j=1

L⋅
j
(T) and L(T) =

K∑
j=1

Lj(T).

VaR1−�(L) ∶= inf
{
l ∈ ℝ ∶ ℙ(L ≤ l) ≥ 1 − �

}
= F−1

L
(1 − �),

AVaR1−�(L) ∶= 𝔼
[
L||L ≥ VaR1−�(L)

] (∗)
=

1

1 − � �
1−�

0

VaR� (L)d� ,
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5 � An example of an actuarial application via a simulation study

The aim of the following section is to illustrate the application of the proposed mod-
elling approach to pricing and risk measurement in an actuarial context. To this end, 
a fictitious insurance portfolio is constructed and parameters for the frequency and 
severity distributions as given in the previous sections are proposed based on pre-
vious academic literature and expert judgement. Based on the resulting simulated 
portfolio loss distribution, the effect of interdependent losses and the introduction 
of cover limits is highlighted. Due to the scarcity of available empirical data, the 
parameters and model assumptions could not yet be fit to (resp. challenged on) a real 
dataset; this remains an important task for future research.

5.1 � Portfolio composition and company covariates

We first construct a (fictitious) insurance portfolio consisting of K = 50 firms from 
B = 6 sectors, all details are listed in Table 3. A bigger portfolio, which is used in 
our simulation study, is then obtained by copying each firm 10 times with IT secu-
rity levels varying from 0.05 to 0.95 (stepsize 0.1). This enables us to compare the 
results of the entire portfolio ( K = 500 ) with sub-portfolios ( K = 50 ) of different 
security level (denoted sub-portfolio 1 – 10), and for each individual firm with vary-
ing security level. Table 4 gives an overview of the relative and absolute frequencies 
for each covariate in each sub-portfolio.

5.2 � Frequency distribution

We require our simulation to adhere to the following stylized facts (F1)–(F5) for the 
frequency of idiosyncratic incidents: 

	(F1)	 Consider a T = 5-year observation period, during which the frequency increases 
by around 67% [3]. The increase is realized in yearly (log-linear) steps; within 
each year the frequency is assumed constant.

	(F2)	 During the first year ( t ∈ [0, 1) ) and for baseline covariate levels 
sj = dj = nsupj = 1, cj = 0.5 , the incident (loss) probability is 0.01 (this is a 
conservative estimate).
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	(F3)	 Incidents are distributed into 25% DBs [56], 25% BIs, and 50% FR (or other).
	(F4)	 An increase of either of the categorical covariates sj, dj , and nsupj by one (two) 

level(s) from the baseline implies an increase of the incident rate by 10% (20%).

	(F5)	 Assume a log-linear influence of the security level such that increasing it to the 
maximum ( cj = 1 ) yields a halved rate of cyber incidents (and thus lowering it 
to the minimum ( cj = 0 ) leads to a doubled rate), compared to the baseline.

These assumptions imply the parameters for the covariate-dependent rates of idio-
syncratic incidents (c.f. Eq. (2)) in the upper panel of Table 5.18 For systemic events, 
we follow Sect.  4.2.2, where the assumed parameters for the ground process (c.f. 
Eq. (4)) and the mark distribution are given in the lower panel of Table 5. Although 
it is difficult to make assumptions, as none of the existing studies explicitly dis-
tinguish systemic events, Table  5 reflects the following simplifying assumptions 
(F6), (F7) (as before, we do not have any information to justify any more complex 
assumptions): 

	(F6)	 The mark distribution is equal for DB, BI, and FR. Sector-specific events are 
(discretely) uniformly distributed over all sectors.

	(F7)	 The number of incidents from systemic events is similar to the number of 
idiosyncratic incidents for baseline covariate levels, which implies a doubled 
overall incident frequency (and a 50% increased loss frequency).

5.3 � Severity distribution

For this study, we deviate from the very high mean (resp. median) severity estimates 
given in the existing literature (several million US$ for a single incident) for two rea-
sons: First, it is reasonable that events listed in public databases exhibit much higher 
losses than the average daily-life cyber incident that goes unnoticed by the public 
and second, insurance policies currently offered on the market (especially policies 
for SMEs) usually have cover limits of up to 5 million US$ , therefore it would not be 
reasonable to assume mean claim severities that already exhaust the policy limit.19 
Recall that this study is intended as a prototype to show the general behaviour of 
the model; absolute numbers given should not be interpreted as representative of 

19  Note that as the existing studies do not state whether the recorded cyber losses were fully or partly 
insured, it is not possible to make statements about the relationship between those losses and the size of 
potentially corresponding insurance claims.

18  To illustrate how these parameters relate to the assumptions, take the example of (F4): 
The increase of the idiosyncratic rate of some type of incident when increasing a categori-
cal covariate by one level from the benchmark (where the benchmark is represented by the inter-
cept) is given by �⋅,idio((xj1, 2, xj3, xj4, xj5), t)∕�

⋅,idio((xj1, 1, xj3, xj4, xj5), t) = exp(f�,⋅,2(2)) . Equat-
ing this ratio to 1.1, i.e. assuming a c.p. 10% increase, yields f�,⋅,2(2) = 0.095 . Likewise, equating 
�⋅,idio((xj1, 3, xj3, xj4, xj5), t)∕�

⋅,idio((xj1, 1, xj3, xj4, xj5), t) = exp(f�,⋅,2(3)) to 1.2, i.e. assuming a c.p. 20% 
increase, yields f�,⋅,2(3) = 0.18.
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a real-world portfolio. The following assumptions (S1)–(S7) lead to the choice of 
parameters given in Table 6: 

	(S1)	 During the first year and for baseline covariate levels, for all types of incidents 
the expected claim size of the underlying log-normal distribution is given by 
�[L̃ij] = 50.

	(S2)	 The standard deviation of the underlying log-normal cost distribution is con-
stant and consistent with the results for (negligent) data breaches in Refs. [49] 
and [72].

	(S3)	 The expected claim size �[L̃ij] increases by 10% (20%) for a one (two) level 
increase of either sj or dj relative to the benchmark. The influence of cj on �[L̃ij] 
is log-linear, where cj = 1 results in a halved expected claim size.

	(S4)	 Over the T = 5-year observation period, �[L̃ij] increases (in yearly log-linear 
steps) by 60%.

	(S5)	 For large claims, the shape parameter � of the GPD is constant and close to 
1 [56] to model heavy-tailed behaviour while avoiding a switch from a finite-
mean to an infinite-mean scenario.

	(S6)	 The expected threshold exceedance (relative to the correspond-
ing threshold, dependent on the underlying log-normal distribution) 
�[Lij − uij | Lij > uij]∕uij = 𝛽ij (uij(1 − 𝜉ij))

−1 equals 0.5 for baseline covariate 
levels, i.e. the expected size of a claim exceeding the threshold is given by 1.5 
times the threshold.

	(S7)	 The same assumptions regarding covariate- and time-dependence as for small 
claims are made, referring to the expected relative threshold exceedance (e.g. 
a one-level increase of sj leads to a 10% increase) instead of the expected claim 
size. In this case, the influence of cj is linear and such that cj = 1 results in a 
halved expected relative threshold exceedance.20

5.4 � Results of the simulation study

The following results are based on 50.000 simulation runs on a grid of 5 years, reported 
values refer to the first year unless stated otherwise. For each run, the arrival times of 
idiosyncratic incidents (at each firm) and systemic events are generated using the rates 
in Eqs. (2) and (4), respectively. For each systemic event, the affected subset Si is gener-
ated as described in (A4) using r.v. Gi, Bi , and Zij from their respective distributions. 
Furthermore, mi is drawn and the set S∗

i
 deduced from the realisations of Si and mi . This 

20  Assumptions (S6) and (S7) result in equations for � of the type 
� ⋅
ij
= u⋅

ij
(1 − �⋅) (��,⋅ +

∑
f�,⋅,k(xjk) + g�,⋅(t)) with coefficients given in Table  6 which do not strictly fit 

into the framework of [57] for fitting a covariate-dependent GPD. When calibrating the model to data, 
it is not required to make any such assumption. Note, however, that due to the reparametrization in the 
framework of [57], the covariate dependence of � is not intuitive. Therefore, we stick to intuitively inter-
pretable assumptions.
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yields an overall number of losses and incidents for each firm on each step of the grid, 
such that the corresponding severities can be drawn from the appropriate (time- and 
covariate-dependent) distribution.

5.4.1 � Cumulative loss distribution

First, we examine the number of incidents/losses and the distribution of cumulative 
losses in the full portfolio ( K = 500 ) in Fig. 2a and b. We compare the case where 
only actual losses are counted with the case where all incidents are counted (i.e. the 
worst case where all incidents cause a loss). At first glance, the two cases appear to 
be surprisingly similar. Notice, however, that due to the assumptions above, for most 
firms the rate of idiosyncratic incidents outweighs the rate of incidents from sys-
temic events. Furthermore, the lower the security level for a given firm, the higher 
its contribution to the overall number of incidents, and simultaneously the lower 
the effect of distinguishing losses and incidents. Conversely, the higher the security 
level of a given firm, the less likely it is to be affected at all. Therefore, when only 
few cases are registered at all, these cases are likely to have occurred at firms with 
low security and are therefore unlikely to be filtered. The cases where most filtering 
occurs are large systemic events whose effect is clearly reduced (consider the range 
around [45, 65] on the x-axis of Fig. 2b). Of course, this translates analogously to 
Fig. 2a, where particularly the tail of the distribution is altered (x-axis-range around 
[2500, 4000] in Fig. 2a). In this case, it additionally has to be kept in mind that inci-
dents at well-protected firms—which are mostly filtered—are assumed to typically 
cause below-average losses. In both figures, one observes the difference in mean 
between counting losses and incidents, and that the mean is shifted clearly to the 
right from the mode of the body of the distribution. As expected from the assump-
tions above, we observe a shift of the cumulative loss distribution to the right as 
time progresses. To corroborate the simulation results, we generate 50.000 samples 
of incident/loss numbers following Proposition 1 and Eq. (12) and compare them 
in Fig. 2d. The simulation via Eq. (12) is much faster, but cannot be directly used 
to generate the cumulative loss distribution, as only samples of the total number of 
incidents/losses are drawn without information as to which firms they affect (and 
severity differs between firms).

Furthermore, we compare the cumulative loss distribution for selected sub-port-
folios in Fig. 2c, taking into account only simulation runs where a non-zero loss has 
been observed. As to be expected, we observe a shift of the body and tail of the loss 
distribution to the left as the security level increases. Understanding the cumulative 
loss distribution—especially in the tail—is particularly interesting in the context of 
reinsurance, where common contract design involves so-called excess-of-loss rein-
surance, meaning that (portfolio) losses exceeding a pre-specified limit are ceded. 
For this case, an accurate understanding of the portfolio loss distribution and its tail 
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is clearly essential. Apart from these considerations, insurers are mostly concerned 
with the pricing of individual policies. This is addressed next.

Table 4   Occurrence frequencies of covariate values in the toy portfolio

This dataset is copied ten times with varying IT security level ranging from 0.05 to 0.95

Covariate Scope Frequency

Sector bj FI: finance and insurance 0.30 (15)
HC: healthcare 0.30 (15)
BR: businesses (retail) 0.10 (5)
EDU: education 0.10 (5)
GOV: government and military 0.10 (5)
MAN: manufacturing 0.10 (5)

Size sj 1 Small 0.60 (30)
2 Medium 0.30 (15)
3 Large 0.10 (5)

Data dj 1 Low risk 0.20 (10)
2 Medium risk 0.28 (14)
3 High risk 0.52 (26)

Number of suppliers nsupj 1 Low 0.74 (37)
2 Medium 0.20 (10)
3 High 0.06 (3)

Table 5   Chosen parameter assumptions for frequencies (based on (F1)–(F7))

Idiosyncratic incidents
 Intercept (�DB, �FR, �BI) (−6,−5.3,−6)

 Data factor levels fDB,3(xj3) (0, 0.095, 0.18)
 Size factor levels fFR,2(xj2), fBI,2(xj2) (0, 0.095, 0.18)
 Supplier factor levels fDB,5(xj5), fFR,5(xj5), fBI,5(xj5) (0, 0.095, 0.18)
 IT security dependence fDB,4(xj4), fBI,4(xj4) 1.39 (0.5 − xj4)

 Time dependence g�DB,idio (t), g�FR,idio (t), g�BI,idio (t) 0.128 ⌊t⌋
Ground process of systemic events
 �DB,g(t) = exp(g�DB,g (t)) exp(−3.28 + 0.128 ⌊t⌋)
 �FR,g(t) = exp(g�FR,g (t)) exp(−2.59 + 0.128 ⌊t⌋)
 �BI,g(t) = exp(g�BI,g (t)) exp(−3.28 + 0.128 ⌊t⌋)

Distribution of Si
 (pG, pgen, psec) (0.5, 0.1, 0.2)
 Sector distribution Bi ∼ Unif {1,… , 6} , i.e. pb =

1

6
∀b ∈ {1,… ,B}
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5.4.2 � Premium calculation

Based on the distribution of individual losses, we calculate the first-year premium 
based on the expected value principle given in Sect. 4.4.21 Table 7 compares the fol-
lowing exemplary firms: 

Firm 1:	 A small manufacturing business with low data and supplier risk and low IT 
security standards ( c = 0.15).

Firm 2:	 A medium-sized company in the financial sector with medium data and sup-
plier risk and high IT security standards ( c = 0.85).

Firm 3:	 A large health care provider with high data risk, medium supplier risk, and 
average IT security standards ( c = 0.55).

The results show that the IT security level dominates the covariate-effect on the 
premium, which is in line with the assumptions. As in practice, the calculation of 
expected losses is typically based on historically recorded (rare!) losses, only very 
few firms with the exact same covariate combinations might be in the portfolio and 
therefore, the premium is rather calculated based on all losses within a class of firms 
considered homogeneous. New firms falling into the same class are then assigned 
the same premium. The quite difficult task is to find an appropriate way of parti-
tioning firms into homogeneous groups. If we partition firms according to their IT 
security level and calculate their premium by taking into account all firms with the 
same level, we obtain the results shown in Fig. 3.22 As to be expected, the premium 

Table 6   Chosen parameter assumptions for severities (based on (S1)–(S7))

�

Intercept ��,⋅ 3.91
Data factor levels f�,DB,3(xj3) (0, 0.095, 0.18)
Size factor levels f�,FR,2(xj2), f�,BI,2(xj2) (0, 0.095, 0.18)
IT security dependence f�,⋅,4(xj4) 1.39 (0.5 − xj4)

Time dependence g�,⋅(t) 0.1175 ⌊t⌋
� �⋅ 0.076
� ��,⋅ 0.9
�

Intercept ��,⋅ 0.5
Data factor levels f�,DB,3(xj3) (0, 0.05, 0.1)
Size factor levels f�,FR,2(xj2), f�,BI,2(xj2) (0, 0.05, 0.1)
IT security dependence f�,⋅,4(xj4) 0.5 (0.5 − xj4)

Time dependence g�,⋅(t) (0, 0.063, 0.133, 0.211, 0.3) �{⌊t⌋=i}, i ∈ {0,… , 4}

21  Note that for the chosen severity parameters, only the first moment exists (0.5 < 𝜉 < 1) . This prohibits 
the use of the exponential and standard deviation principle. We will remedy this by introducing cover 
limits later.
22  Theoretical premiums in this figure refer to the premium that would be assigned to each firm if the 
expected sub-portfolio loss (the sum of the expected single losses) was allocated evenly among all firms 
in the sub-portfolio. This is analogous to the simulated approach of pricing each firm equally based on 
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(b)

(a)

Fig. 2   In panels (a) and (b), for the entire portfolio ( K = 500 ), the number of incidents and losses and 
the distribution of the cumulative portfolio loss for 50.000 runs is compared. In panel (c), the cumulative 
loss distributions for three sub-portfolios with different security levels, namely 0.05 (Portfolio 1), 0.45 
(Portfolio 5), and 0.95 (Portfolio 10) are shown; here, only runs with non-zero recorded loss are taken 
into account, causing the sample size to vary between portfolios as to be expected. In panel (d), incident 
numbers as in Eq. (12) are simulated such that one can observe the similarity to panel (b)

Footnote 22 (continued)
the loss history of the—assumed homogeneous—portfolio. Combining the two “extremes” of consider-
ing only individual loss experience and only loss experience from a homogeneous group lies at the heart 
of credibility theory approaches and will not be addressed here.
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decreases with increasing security level, while the difference between incidents and 
losses increases. As an alternative to (and validation for) the Monte Carlo simula-
tion, we have furthermore implemented a Panjer recursion scheme using a discre-
tized version of the severity distribution; the results are given in Online Appen-
dix A.5 and corroborate the ones given here.

(d)

(c)

Fig. 2   (continued)
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5.4.3 � Risk measurement on individual and portfolio level

We compare VaR and AVaR for the three firms described above and two sub-portfo-
lios in Table 8, as well as for all sub-portfolios in Fig. 4a and b. The historical esti-
mate refers to the sample quantile from the simulation data, i.e. for a realisation of 
losses � = (L1,… , Ln) , let L(1) < L(2) < … < L(n) denote the order statistics, then for 
a chosen level (1 − �) ∈

(
i−1

n
,
i

n

]
 , VaR1−� and AVaR1−� are estimated as their empiri-

cal counterparts

The POT estimate assumes that for a large threshold u, the excesses are distributed 
according to a generalized Pareto distribution GPD(u, �, �) , and thus VaR1−� and 
AVaR1−� can be estimated as (see, e.g. Ref. [57])

where 𝛽  and 𝜉 are the parameter estimates of the scale and shape of the GPD given 
the data � and n′ is the number of threshold exceedances. As to be expected, both 
VaR and AVaR decrease with increasing security level, while the reduction when 
considering only losses instead of all incidents is more substantial. Note again that 

�VaR1−𝛼(�) = F̂−1
L
(1 − 𝛼) = L(i),

�AVaR1−𝛼(�) =
1

n − i + 1

n∑
j=i

L(j).

�VaR1−𝛼(�) = u +
𝛽

𝜉

(( 𝛼
n�

n

)−𝜉
− 1

)
, �AVaR1−𝛼(�) =

{
�VaR1−𝛼(�)+𝛽−𝜉u

1−𝜉
, if 𝜉 ∈ (0, 1),

∞, if 𝜉 ≥ 1,

Fig. 3   We compare the premium (with loading 0.2 as above) that would be assigned to firms if they were 
grouped according to their IT security level. We observe that simulated values are now very close to 
theoretical ones, as they depend on the loss history of a sub-portfolio of 50 firms, such that Monte Carlo 
noise is reduced (compared to Table 7). We furthermore compare the values for the single firms from 
Table 7 with the portfolio they would be grouped into, and observe that e.g. firm 1, when evaluated on its 
own, is slightly less risky than the average firm in sub-portfolio 2
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for individual firms, the numbers are based on their own loss history only and should 
be interpreted with care.

5.5 � How relevant is accumulation risk?

We have repeatedly stressed the distinction between idiosyncratic incidents and sys-
temic events and emphasized that the latter can lead to accumulation risk (re-)

(a)

(b)

Fig. 4   Comparison of VaR0.99 and AVaR0.99 for all sub-portfolios
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insurers should be particularly worried about. One might now question whether the 
effect of including systemic events on the loss distribution warrants such a more 
complicated model. In order to answer this question (spoiler alert: yes!), we com-
pare the results above with the results of a model that assumes the same marginal 
frequency as before for each firm, but assumes all incidents to be idiosyncratic, i.e. 
to occur independently from other firms. Intuitively, this should lead to the same 
premium for each individual contract, but decrease portfolio risk. Following 
Eq. (11), the overall number of incidents N̄⋅

j
(T) at each firm j ∈ {1,… ,K} is gener-

ated using two independent Poisson r.v.

independently from all other firms. To be able to compare the two cases in each run, 
the number of losses N⋅

j
(T) at each firm j ∈ {1,… ,K} is then generated as

With the severity distributions remaining unchanged, an analogous simulation study 
as above is conducted. Again, we first examine the overall distribution of the cumu-
lative portfolio loss and number of incidents and losses in Fig.  5a and b, respec-
tively. The difference to Fig. 2a and b is immediately evident:

–	 The visible heavy tails for both incident numbers and cumulative losses have 
vanished; thus it can be assumed they have been caused by systemic events with 
many firms affected simultaneously.

–	 In particular, the highest observed number of losses has decreased to around 17% 
of its previous value in both considered years, while mean losses and mean num-
bers of incidents/losses have stayed unaffected.

–	 The difference between incidents and losses is more directly visible, as in 
the independence case the body of the cumulative loss distribution is directly 
affected. This is because individual incidents are now filtered instead of the fil-
tering impacting only systemic events, whose occurrence mostly alters the tail of 
the distribution.

From these findings, we conclude that incorporating systemic events into the 
model to capture potential accumulation risk is essential. We furthermore report 
VaR0.99 and AVaR0.99 for all sub-portfolios in Fig. 6a and b, respectively. Comparing 
them with Fig. 4a and b yields the same to-be-expected decreasing pattern as the 
security level increases, but the absolute values of the risk measures can be observed 
to have about halved. Perhaps it should rather be put vice versa: By including sys-
temic events compared to complete independence, for the same expected overall 

N̄⋅

j
(T) = N

⋅,idio

j
(T)

�����

∼Poi
(
Λ⋅,idio

j
(T)
)
+ N̄

⋅,syst

j
(T)

�����

∼Poi
(
p̃(bj)Λ

⋅,g

j
(T)
)

N⋅

j
(T) = N

⋅,idio

j
(T) + N̄

⋅,syst

j
(T)

�����

∼Binom
(
N

⋅,syst

j
(T),F̄M (cj)

)
.
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number of incidents, the risk measures VaR0.99 and AVaR0.99 on sub-portfolio level 
double.

As the marginal frequency and severity for each firm remain unchanged, calcu-
lated premiums should not differ from the previous simulation study; this is corrobo-
rated in Online Appendix A.5.

We have mentioned before that very heavy-tailed loss severities characterize 
cyber risk, and previous studies typically suggest such heavy tails that any moments 
higher than first order do not exist (and in some cases tail parameter estimates even 
yield infinite-mean scenarios). Even a finite-mean, infinite-variance scenario (as 
above, with 0.5 < 𝜉 < 1 ) is cumbersome to deal with, as e.g. only premium calcula-
tions based on the first moment can be applied. “Luckily,” in the insurance context, 
one typically does not deal with loss severities (without upper limit) directly, but 
rather with claim sizes, which are typically bounded from above by the introduction 
of a cover limit, a maximum amount the insurer is obliged to cover for each loss. 
The effects of this contract design feature are examined next.

5.6 � Cyber policy design: the effect of cover limits

In practice, typical (primary) insurance contracts include a cover limit, as the insurer 
seeks to bound losses from single, extreme incidents. This, however, can lead to a 
supply-demand-mismatch: Insurers, still cautious of this new risk type, prefer rela-
tively low cover limits (with a few exceptions, see the overview in Ref. [25]) that are 
sufficient to cover day-to-day cyber incidents, while many firms particularly seek 
protection for extreme scenarios such as a large data breach or long BI. [14, 58, 60] 
reported the non-existence of adequate cover limits as one reason for firms to refrain 
from purchasing cyber insurance.

Mathematically speaking, the introduction of a cover limit M̄ corresponds to the 
truncation of the loss distribution, i.e. each Yi ∈ [0,∞) is mapped to a claim size 
Ŷi via Yi ↦ Ŷi ∶= min{Yi, M̄} ∈ [0, M̄] . Note that we assume a limit on each loss; 
alternatives might be a limit on the total loss over the policy duration or a limit on 
the number of covered claims. Assuming, however, a realistically small claim fre-
quency, this does not make a large difference, as cases of multiple losses happening 
at the same firm during a single policy year are extremely unlikely. Table 9 reports 
the probabilities of exceeding different cover limits for a large severity event and 
three different covariate combinations: the baseline case (year 1, s = d = nsup = 1 , 
c = 0.5 ), the lowest-risk case in the portfolio (year 1, s = d = nsup = 1 , c = 0.95 ), 
and the highest-risk case in the portfolio (year 5, s = d = nsup = 3 , c = 0.05 ). To 
find the probability of an incoming claim to exceed the cover limit, we condition on 
observing a large claim event, i.e. in the notation of Sect. 4.3:

ℙ(Lij > M̄) = ℙ(Lij > M̄ | Lij > uij)
���������������������������

see Table 9

ℙ(Lij > uij)
���������
= 1−z

e.g.
= 0.05

, M̄ > uij.
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(a)

(b)

Fig. 5   For the entire portfolio ( K = 500 ), the number of incidents/losses and the distribution of the 
cumulative portfolio loss for two different years is compared if incidents are assumed to arrive com-
pletely independently between firms
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We now assume the cover limit for all contracts to be M̄2 and run the same simu-
lation as before. This could be generalized to allowing different limits depending 
on the insured’s characteristics, e.g. a certain IT security level could be considered 
a prerequisite for a contract with a high limit. Similarly as above, Fig. 7 displays 
the (simulated) premium. While changes in the absolute numbers for the expected 
value principle are minor, the use of other common principles are now viable (all 
moments exist for the truncated losses) and deliver stable results.

(a)

(b)

Fig. 6   Comparison of VaR0.99 and AVaR0.99 for sub-portfolios of size K = 50 with varying security levels
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Figures showing VaR0.99 and AVaR0.99 analogously to above are given in Online 
Appendix A.6. As to be expected, the introduction of a cover limit leads to an over-
all decrease in both risk measures, where the effect is higher for sub-portfolios with 
lower security (who tend to suffer the most severe losses and are therefore most 
impacted by a cover limit) and AVaR0.99 decreases more than VaR0.99 in absolute 
numbers (see Figure 9 in Online Appendix A.6).

6 � Conclusion

We have presented an actuarial approach to modelling cyber risk that is consistent 
with the characteristics of the underlying risk factors from an economic and infor-
mation-technological viewpoint. For this purpose, the existing literature on tech-
nical, statistical, economic, actuarial, and legal aspects of cyber risk was analysed 
in detail to identify relevant risk factors and plausible distributional assumptions 
within an actuarial framework. By construction, the resulting model is able to cap-
ture accumulation risk stemming from multiple firms being simultaneously affected 
by a cyber event; a prospect that insurers are especially worried about. Some dis-
tributional properties of the model and their relevance in the cyber context were 
highlighted. Moreover, we demonstrated how the model can be implemented in an 
insurance context using a loss distribution approach. An illustrative simulation study 
makes use of this implementation and derives the yearly premium for individual 
contracts as well as common portfolio risk measures. The model is stressed in dif-
ferent directions (contract design, the omission of systemic events) and the findings 
are analysed from the perspective of an actuary. Given the scarcity of available data 
on cyber losses, let us reiterate that distributional assumptions and concrete param-
eter choices rely on the existing literature (scattered across different disciplines) and 
expert judgments, hence, all quantitative findings should be interpreted with some 
caution in the light of model/parameter risk. Naturally, since the model presented 
here is not challenged on data, it is limited to its specific assumptions, e.g. using a 
Poisson process for arrivals; for the exemplary simulation study, these assumptions 
are further simplified to illustrate the actuarial exercise. However, to account for 
updates in the future, we consciously use a modular design that could allow to alter/
replace parts of the model or to adapt it to a specific portfolio an insurance company 
works with.

Table 9   Conditional exceedance probabilities ℙ(L
ij
> M̄ | L

ij
> u

ij
) × 102 of three cover limits for large 

severity incidents

We observe that a cover limit in most cases impacts only very few (large) claims

Cover limit Low risk Baseline High risk

M̄1 = 500 0.0977 0.4055 5.9530
M̄2 = 1.000 0.0437 0.1760 2.1016

M̄3 = 10.000 0.0033 0.0129 0.1335
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Many interesting aspects, however, remain open for future research. Once suf-
ficient cyber risk data is available, optimal estimation procedures and out-of-sample 
tests for the model assumptions are called for. Less theoretical, but equally impor-
tant, appears the economic/legal question of categorizing cyber incidents. From the 
actuarial perspective, extremely interesting is the question of (optimal) cyber insur-
ance contract design. Currently offered cyber insurance products seem to reflect the 
lack of an established common understanding of cyber risk and the resulting caution 
with which many insurers approach the topic. A better understanding of the underly-
ing dynamics of cyber risk will in time hopefully enable product design to reflect 
economic optimality criteria instead of the insurers’ operational limitations. Fur-
thermore, what separates cyber from most other loss categories is the potential of 
designing cyber insurance products that transcend mere risk transfer, e.g. by includ-
ing incident response teams or other services. To the best of our knowledge, this 
(non-traditional) part of cyber insurance contract design has not yet been addressed 
from an academic actuarial science viewpoint.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s13385-​021-​00290-1.
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