
Pre-empting fire risk 
Fire safety

This study develops specific models for estimating and forecasting fire risk 

based on a combination of time series analysis and remote sensing data. 

The risk indices used in this procedure are the FPINDWI and the FPINDVI, which 

differ in terms of the vegetation index used in their calculation, NDVI or 

NDWI. The FPI (Fire Potential Index) pools meteorological data with 

information from remote sensing images. Time series analysis has 

unearthed dynamic patterns in fire behaviour during the study period 2000-

2009. From the time series for the period 2000-2008, specific forecast 

models were developed for the two indices by «fuel type-bioclimatic 

region». The results show a good fit between the original FPINDWI data and 

the forecasts for 2009. The study also shows that the FPINDWI’s risk 

forecasting accuracy is better than the FPINDVI’s, especially for the 

ecosystems of the north of the study region.
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Fire is considered to be a natural component of many ecosystems. Mediterranean ecosystems in particular have been

heavily fire-adapted over time. Human pressure, however, has distorted this natural balance. The ecosystems can no longer

cope with the sheer number of fires that break out and the vast area burnt, and are now suffering a grave environmental

damage in terms of species make-up and biodiversity.

Fire behaviour is governed by three natural factors: fuel availability, the lie of the land and the weather[1]. For a fire to

break out there must be sufficient biomass, the environmental conditions must be suitable and there must also be some

source of ignition.

Although sociological factors weigh heavily on fire occurrence[2], fires in Spain, especially the big ones, tend to break out in

summer, showing that the prevailing weather does play a key role. At this time of year the accumulated biomass becomes

an easily combustible fuel under the right conditions. The fuel’s availability and water content therefore also play a key

role in fire outbreak. Furthermore, while the sociological and meteorological factors are very difficult to control, the

former being hard to predict and the second inevitable, direct action is possible on the fuel by means of a suitable
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IDENTIFYING HIGH FIRE RISK 
AREAS AND ALSO 

UNDERSTANDING THEIR DYNAMIC 
IS ESSENTIAL FOR FIRE 
PREVENTION AND THE 

MANAGEMENT AND CONTROL OF 
WOODLAND 

management of silvicultural work[3]. The working hypothesis of this study is therefore that fuel type is a fundamental risk

factor; the risk is also modulated by vegetation response to weather fluctuations, a highly variable factor.

Fuels can be described in terms of type, load and state. The fuel type is a static characteristic intrinsic to the fuel itself,

whereas load and state are dynamic variables that vary throughout the year. These variations might be daily, seasonal or

annual. Daily variations are responses to the changing weather conditions; seasonal variations are governed mainly by the

biophysiological cycle of the fuel and cumulative weather effects while annual variations are the system’s response to the

plant species’ growing cycle[3].

Identifying the high fire-risk areas, and also understanding their dynamic over time, is essential for the prevention, control

and management of woodland. This identification process also furnishes a useful tool for assessing ecological conditions,

since many of Spain’s ecosystems are moulded by the effects of wildfires[1] . This type of analysis favours a better

understanding of how variables like climate and vegetation exert a dynamic influence on fire behaviour[4], but it is a

complex task since these variables all have different variation scales. Hence the need for defining specific forecasting

models for each climate-vegetation combination showing different fire behaviour.

The time pattern of wildfires can be analysed by means of the risk indices, used to estimate the likelihood of a fire

breaking out. The indices most widely used in Spain depend only on the weather conditions; nonetheless in Spain’s

geographical conditions it has proven very hard to forecast the number of fires or area burnt in terms solely of the weather.

The Fire Potential Index (FPI)[5] is a dynamic fire risk indicator combining information on fuel type, weather information and

vegetation state, provided by remote sensing images. The FPI has been successfully tried and tested in very different

geographical areas. Several authors[6,7 and 8] have shown the usefulness of this index for describing wildfire behaviour in

temperate and Mediterranean regions. Other authors[9] have drawn up an FPI-based statistical model for forecasting the

number of large fires, thus demonstrating this index’s capacity for estimating and forecasting fire occurrence.

The space-time coverage of some remote sensing systems makes the information

supplied especially suitable as an indicator of the vegetation state within the risk

indices. The multispectral images are generally analysed using vegetation

indices, which are reflectance ratios at different wavelengths and depend on the

specific properties of the vegetation. The most widely used spectral indices are

the NDVI (Normalized Difference Vegetation Index)[10], related to photosynthetic

activity, and the NDWI (Normalized Vegetation Water Index)[11], more dependent

on humidity.

Time series analysis (TSA), in its frequency-domain methods and time-domain methods[12], offers a highly useful forecasting

tool in nearly all areas of knowledge in which a magnitude can be measured with a given frequency, ranging from

economics to engineering or meteorology. For wildfires it has been used, among other aspects, to study the area burnt per

year[13], to monitor fuel humidity and assess fire risk[14], verify the dominant fire cycle[15], or to identify pre- and post-fire

vegetation trends[16]. TSA furnishes us with a series of tools for pinpointing the time patterns that determine the past and

present dynamic of a given variable. It also offers us a methodology for building up forecasting models based on well-

defined statistical models, such as AR (autoregressive), MA (moving average), ARMA (combining the two former) and ARIMA

(autoregressive integrated moving average, incorporating an integration term to establish the variable’s stationarity). In

reality it is not a single model but rather a set of possible models. The estimation procedure is a trial and error process to

find the model that best fits the selected variable. These models have been used in various environmental fields such as

hydrology[17] and in climate change studies[18], among others. These models may be used to study, analyse and model the

behaviour of a variable and also to forecast its future value. Several authors[19] use an ARIMA Model to forecast drought in

China.

The objective of this study is to develop specific or local fire-risk forecasting models by means of time series analysis. The

fire risk is estimated using the Fire Potential Index proposed by Burgany et al (FPINDVI) and the modification proposed by

Huesca et al[8] (FPINDWI).

Study Area

The study area is the Comunidad Foral de Navarra (Region of Navarre), which occupies an area of 10,420 km2 and lies on

the borderline of the temperate (or Atlantic), Alpine and Mediterranean bioclimatic zones. Within each ecoregion the



THE WILDFIRE TIME PATTERN 
CAN BE ANALYSED BY MEANS OF 

FIRE POTENTIAL INDICES FOR 
CALCULATING THE LIKELIHOOD 

OF A FIRE BREAKING OUT

climate characteristics are sufficiently alike to ensure similar behaviour in terms of soil evolution and climax woodland, and

therefore different fire behaviour within each one.

The Atlantic region is characterised by a warm temperate maritime climate, heavily influenced by the Cantabrian sea, with

high rainfall, mists and drizzle and mild temperatures. The climax woodland in this region is deciduous. Fires are frequent

but typically small in area. They have a bimodal distribution with two peaks, one at the start of spring and the other in

summer-autumn.

The Alpine region can be broken down into two zones: the first, higher up, with a cold, humid continental climate and the

second, lower down and closer to the borderline with the Mediterranean region. The latter is in fact a transitional area

between the cold Mediterranean climate and temperate Mediterranean climate. The predominant woodland in the Alpine

region is conifer and beech with a low fire frequency and a marked seasonal and annual variability.

In the Mediterranean region the climate is Mediterranean as a whole but with a

clear Atlantic influence in the western part verging into continental towards the

east. The typical woodland of this region is sclerophyll Mediterranean, with an

intermediate fire frequency likely to affect middling to large areas. The

distribution of the fires is unimodal with a single peak in summer.

Materials and methods

• Remote sensing information 

The remote sensing information used consists of a set of 454 images captured by the MODIS sensor (MODerate

resolution Imaging Spectroradiometer) onboard the TERRA satellite (https://lpdaac.usgs.gov/). The product used is the

MOD09A, consisting of surface reflectance images taken in the spectral zone ranging from blue to SWIR channels. The

images used have a spatial resolution of 500 metres and are 8-day compounds, making up 46 images per year, i.e., 46

values for each pixel making up the image. The study period ran from February 2000 to December 2009.

The images were downloaded from NASA’s server and were reprojected on the UTM30N projection system WGS-84

datum. The time series were built up from the extracted red (648 nm), near-infrared (858 nm) and SWIR1 (1240 nm)

channels. This gives reflectance time series at three wavelengths during a 10-year period and about every 8 days.

Finally, the NDVI and NDWI vegetation indices were calculated (equations 1 and 2), to be used for calculating the fire

potential index FPI.

(Eq.1)

(Eq.2)

where ρr, ρnir and ρswir represent the reflectance in red, near infrared and SWIR1 channels respectively. 

The series were smoothed as far as possible by identifying and filtering out any outliers, using thresholds defined in

terms of the mean and standard deviation of the time series. The outliers were replaced by the mean between the

value of the previous date and the next date. If the previous or next date were also outliers, the first non outlying

value was used.

• Meteorological Information

The meteorological information was taken from the existing meteorological stations in the Comunidad Foral de

Navarra and in the bordering provinces. The latter were tapped into to ensure a good quality of information in the

borderline areas of the study. The daily readings from the meteorological stations of the Comunidad Foral de Navarra

for the period 2000-2009 were furnished by the Departamento de Desarrollo Rural y Medio Ambiente (Environment and

Rural Development Department) of the Gobierno de Navarra (Regional Government of Navarre). The meteorological

data from the stations of the bordering provinces was obtained from the 17 meteorological stations of the State



Meteorological Agency (Agencia Estatal de Meteorología: AEMET). Since 2000 the number of available stations in

Navarre has been increasing so the maximum number was used each year in the interests of obtaining the best possible

results.

The variables used were maximum temperature and minimum relative humidity each day to work with the most

adverse wildfire situation. The daily data was summarised to 8 days to tally with MODIS 8-day data. A calculation was

therefore made of the mean value of maximum temperatures (Tmax) and minimum relative humidity (Hrel) of the 8

dates corresponding to a MODIS compound. Tmax and Hrel were the spatially interpolated date-to-date to build up

maps of Tmax and Hrel for each date of the study period. The temperature was interpolated using the inverse distance

method and minimum relative humidity by means of a multiple linear regression according to equation 3.

(Eq.3)

where H is the height (taken from the digital land model of Navarre).

• Auxiliary Information

Other resources used in the study were the Digital Elevation Model (www.ign.es) and the Navarre Fuel Map

(www.marm.es). The latter is based on the 13 fuel models established for the NFDRS (National Fire Danger Rating

System) and duly adapted to Spanish vegetation. In Navarre all the fuel models are present except for those in which

the fire propagation mechanism is logging slash. Each fuel model is associated with an extinction moisture, which is

the moisture level at which the fire will no longer spread; this parameter is used in calculating the FPI.

• Calculation of the Fire Potential Index (FPI)

The Fire Potential Index (FPI) is expressed as follows:

(Eq.4)

where FPI is the Fire Potential Index, which takes maximum values of 100 when the risk is very high and values close to

zero or negative when there is no risk. FMC10hr represents the moisture content of the small dead fuel and LR is the

live ratio of the combustible fuel charge.

The indices used were the FPINDVI and FPINDWI. The FPI was calculated on the basis of the formulation described by

Huesca et al[8].

• Time Series Analysis (TSA)

First of all a qualitative study was made of the FPI trend over the period 2000-2009 for four zones with a vegetation

type and fuel model representative of the region. A quantitative time series analysis was then carried out[12]. The time

series of FPINDVI and FPINDWI of each pixel were grouped by their behaviour using descriptive statistics (mean and

variance) and autocorrelation function analysis. Zones with a similar trend were thus defined within the study area to

build up an idea of the variability over time of the whole study area.

Descriptive statistics give us a preliminary quantitative idea of the global nature of the risk in each zone. The

autocorrelation function measures the correlation of the risk value at various time intervals apart. This enables us to

assess the risk dynamic and estimate its stability over time, i.e., how repetitive its pattern is.

For each zone with a similar behaviour a specific model was built up following the methodology proposed by Box et al

[12], based on the construction of a statistically suitable model that meets the succinct parameterisation principle

(maximum structural simplicity and minimum number of parameters). This methodology is three phase: (1)

Identification, (2) Estimation and Validation, and (3) Forecasting. In the first stage a study was made of the series’

stationarity and seasonality and an identification was also made of the model’s autoregressive and moving average

terms. The model parameters were then calculated in the second stage and, in the third, a check was made of the



statistical validity of the estimates for the series analysed. Forecast assessment enables the error to be estimated,

accepting or rejecting the estimated model and then returning to a new identification. In this study a model was

initially proposed for each one of the previously defined zones; the next step was to group all the models with a

common structure. The models were estimated using the time series 2000-2008, basing the forecast on 2009.

The statistical significance of the models was estimated by the Student’s t test and the absence of residual

autocorrelation was determined by Ljung–Box Q(k) tests. The model’s forecast accuracy was estimated by means of

Theil’s U test[20].

Results

• FPI Time Trend

Figure 1 shows the map of fuel models broken down by the fire propagation element, grass, undergrowth or leaf litter

and also the localisation of selected pixels to explain the risk time trend from 2000 to 2009. Zone 1 corresponds to

Mediterranean dryfarming land, mainly cereal, in which the propagating element is mainly the grass itself. Zone 2,

lying in the Alpine region is occupied by conifer woods dominated by Pinus silvestris and firs, with leaf litter being the

main fire propagation element. In northwest Navarre (Atlantic region) two zones were selected (3 and 4). Zone 3 is

occupied by broadleaved beech woods. This type of wood is closed canopy with no undergrowth so the fire is

propagated mainly by leaf litter. The predominant woodland type in zone 4 is broadleaved oak and chestnut. These

woods are more open with undergrowth, which thus becomes the main fire propagation element.



Figure 1. Fuel models grouped by the fire propagation element. The numbers in brackets refer to the four zones from which the
time signatures of FPINDVI and FPINDWI have been extracted
(1) Mediterranean dryfarming land.
(2) Conifer woods in the Alpine region.
(3) Deciduous broadleaved woodland of the Atlantic region.
(4) Open deciduous broadleaved woodland with undergrowth of the Atlantic region.

Figure 2 shows the trend over time of FPINDVI and FPINDWI in the representative zones indicated in figure 1.



THE FIRE POTENTIAL INDEX IS A 
DYNAMIC FIRE-RISK INDICATOR 
COMBINING INFORMATION ON 
FUEL TYPE, METEOROLOGICAL 

INFORMATION AND INFORMATION 
ON VEGETATION STATE FROM 

REMOTE SENSING IMAGES

Figure 2. Risk trend calculated from the two indices in the four selected zones from 2000 to 2009. (a) Dryfarming land in the
Mediterranean region. (b) Conifer woods in the Alpine region. (c) Broadleaved deciduous woodland of the Atlantic region. (d) Open
broadleaved deciduous woodland with undergrowth in the Atlantic region.

In the herbaceous crops of the Mediterranean region (figure 2a) both indices

show an almost identical risk behaviour. The risk shows a unimodal pattern

with unmistakable summer peaks. In the woodland of the northern zone

(figures 2b, 2c and 2d) the risk estimated from the FPINDWI is seen to be

considerably higher than that estimated by the FPINDVI except in the winter,

when the risk is lower. In the conifer woods of the Alpine zone (figure 2b) a

more obvious annual pattern is shown by the FPINDWI. The FPINDVI shows a

very irregular pattern. The broadleaved woods (figure 2c) show similar

values for FPINDWI and FPINDVI during the winter and early spring but a very

divergent trend in the summer, the risk rising with the FPINDWI and falling with the FPINDVI. In the autumn the values of



the two indices come back together. In the open deciduous broadleaved woodland with undergrowth (figure 2d) the

behaviour is very similar in winter, spring and autumn. The summer behaviour, however, is divergent in values and

trend, FPINDWI showing higher values than FPINDVI.

Figures 3a and 3b show the autocorrelation function up to 150 lags (a little over 3 years) calculated for the series of

FPINDVI and FPINDWI in the selected zones (figure 1). These graphs show that autocorrelation is high in Mediterranean

grassland and positive in the two indices in lag 1 (~8 days) and in lag 46 (~1 year) and very negative in lag 23 (~6

months). In the conifers of the Alpine zone the autocorrelation function of FPINDWI shows similar values to those of

grass, while the autocorrelation values of FPINDVI are very low and irregular at all lags. The broadleaved woods of the

Atlantic region with leaflitter propagation show slightly higher autocorrelation values for both indices. The

broadleaved woods of the Atlantic region with undergrowth show a similar pattern to conifers in both indices.

Figures 3a y 3b. Autocorrelation up to 150 risk return periods calculated from FPINDVI (a) and FPINDWI (b) in the four selected zones
from 2000 to 2009.

• Zoning of the study area

Figures 4a and 4b show the spatial distribution of the descriptive statistics (mean and variance) for FPINDVI and FPINDWI

respectively; table 1 shows their mean values per fuel model. The leaflitter- or undergrowth-propagated fuel models

show a higher mean and lower variance than grass propagated models.



Figures 4a and 4b. Risk variance and mean maps estimated with FPINDVI (a) and FPINDWI (b) for the study period.

Table 1. Risk mean and variance estimated with FPINDVI and FPINDWI for each fuel model.

Fuel Model FPINDVI FPINDWI

Mean Variance Mean Variance

1 -1.87 345.54 -2.64 397.86

2 6.59 207.94 7.58 256.42

3 27.04 37.81 38.26 50.03

4 21.78 37.81 28.51 121.22

5 18.14 67.17 25.51 122.55

6 29.30 74.48 38.99 88.76

7 40.78 110.19 56.93 23.94

8 29.48 52.06 44.29 63.37

9 28.79 64.54 39.32 68.57

Figures 5a and 5b shows the spatial distribution of the autocorrelation at 8 days, 6 months and 1 year for FPINDVI and

FPINDWI respectively. There is a clear north-south gradient especially in the autocorrelations at 8 days and 1 year. The

southern zone of Navarre shows higher and more positive values than the northern zone. In all cases the

autocorrelation at 6 months is negative; in the north, however, the values are closer to zero.



THE SPACE-TIME COVERAGE OF 
SOME REMOTE SENSING SYSTEMS 

MAKES THEM ESPECIALLY 
SUITABLE AS INDICATORS OF THE 
VEGETATION STATE WITHIN THE 

RISK INDICES

Figures 5a and 5b. Autocorrelation function maps of FPINDVI (a) and FPINDWI (b) at 8 days, 6 months and 1 year in Navarre.

The result of these analyses (table 1 and figures 5a and 5b) show that the zones with similar statistics and

autocorrelation functions at 8 days and 1 year correspond mainly to fuel types and bioclimatic zones. We therefore set

up previous zoning based on the combination of these two variables and the presence of pure pixels within each class.

The result was a 26-class «fuel type-bioclimatic region» zoning.

• Construction of fire risk forecasting models

A model for each class was built up from the zoning obtained in the previous section. This was based on the mean

values of the time series corresponding to the pure pixels completely included in each zone.

The constructed models show a high statistical significance in the estimates

of their coefficients, measured by student’s t tests and also a high

probability of absence of residual autocorrelation calculated from Ljung and

Box Q(k) tests. For most of the estimated coefficients an absolute value

student’s t of over 2 was obtained. Ljung and Box Q(k) test values were low

for all models for periods of half a year, one year and two years (23, 46 and

92 lags). The probability of rejecting residual autocorrelation in these

models (information loss in explaining the model variable) for any lag is

higher than 0.05 (barring 5 cases) and in some cases is higher than 0.8 (80%). This was then the criterion used for

assessing the global model fit.

In a second stage the classes of the former phase were grouped in terms of the coincidence in the autoregressive

model structure. Tables 2 and 3 show the new groups, their composition, significant lags of the selected autoregressive

models and the forecasting accuracy estimated by Theil’s U test for FPINDVI and FPINDWI respectively.

All the models show a structure with a very short term autoregressive parameter (1, 2 and 3 lags � 8, 16 and 24 days)

and another long term (45 and 46 lags � c. 1 year). In all cases (except for the Atlantic chaparral-woodland), the model

estimates a significant medium-term relationship (21, 22 and 23 lags � c. 6 months) with a negative character and

especially low values in the southern zone of Navarre. In the models including grass the system estimates a significant

low-value and negative relation at 10 lags (� c. 2.5 months).



IN THE MEDITERRANEAN REGION 
THE TWO INDICES SHOW AN 

ALMOST IDENTICAL BEHAVIOUR, 
WHILE IN THE ATLANTIC AND 
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UNEARTHED DYNAMIC RISK 

Theil’s U coefficient shows very low values in all models except for grass,

although in the latter most of their value is built up in the covariance

parameter, showing that the errors are random and proving the suitable

forecasting accuracy of the models.

From the selected models the risk forecast has been drawn up for 2009 (46

dates) only of the FPINDWI, since this is the index that shows the best

forecasting accuracy. Figure 6 shows the forecasts of FPINDWI for 2009

together with the calculated value. As can be seen the estimates replicate

the actual risk pattern very closely, practically all the forecasts falling

within the confidence interval.

Figure 6. FPINDWI forecasts for each one of the 10 groups during 2009.

Discussion

FPI Time Trend
The similar behaviour of the two FPIs in herbaceous farmland of the Mediterranean region (figure 2a) is due to the fact that

photosynthesis activity in these ecosystems is perfectly synchronised with the vegetation’s moisture content. Thus, the

pattern shown by the photosynthesis-related NDVI vegetation index and the moisture-related NDWI vegetation index is the

same. The autocorrelation function (high and positive –figure 5a and 5b– in both indices in the short term and at one year)

confirms a very marked annual cycle that tallies with the pattern of the Mediterranean region[1], for this is the predominant

model in the zone.

The higher irregularity shown by the FPINDVI in conifer woods of the Alpine zone (figure 2b) is borne out by the

autocorrelation function, which shows no significant values at any time lag. Moreover, the autocorrelation function of the

FPINDWI shows significant short-, medium- and long-term autocorrelations, confirming the existence of an annual pattern.

The difference between the two indices could be put down to the frequent presence of overcast skies in the area, even in

summer. This introduces an information-distorting level of noise into the NDVI series, while the effect on the NDWI is less

because it is calculated from longer, cloud-penetrating wavelengths.

In the broadleaved woods with leaflitter-propagated fires the autocorrelation

function for the two indices shows a clear annual pattern with more significant

values in the FPINDVI (figure 2c). The most important difference between the two

occurs in summer, when the FPINDVI shows very low values and the FPINDWI peaks.

This divergence is probably due to the fact that the NDVI is more photosynthesis

dependent, responding very directly to phenological changes (very marked in



PATTERNS DURING THE STUDY 
PERIOD

deciduous broadleaved woodland), reflecting itself in the higher absolute

autocorrelation values. The summer leaf cover thus produces a very high live-

load reading in the FPINDVI, and hence a very low estimate of the fuel likely to

ignite. The more moisture-related NDWI, on the other hand, responds more

directly to weather conditions and hence estimates a higher risk in summer, detecting as it does the leaves’ water stress as

the summer progresses.

Table 2. Selected models, structure and forecasting accuracy estimated by means of Theil’s U coefficient for the index 

FPINDVI

Code 

Group

Description Grouped 

models

Significant lags Theil’s Coefficient

U P.skew P.Variance P.covariance

1 Alpine and Atlantic grass AP1, AP2, AT1 y 

AT2

1, 3, 10, 22, 46 0,1938 0,0002 0,2433 0,7565

2 Alpine and Atlantic grass 

type 2

AP3, AT3 1, 2, 10, 22, 46 0,0733 0,0249 0,4658 0,5093

3 Mediterranean grass M1 y M2 1, 2, 3, 10, 22, 46 0,2102 0,0684 0,2709 0,6607

4 Mediterranean grass-

chaparral 

M3 1, 2, 3, 6, 7, 11, 

21, 46

0,0613 0,1388 0,3219 0,5393

5 Alpine and Atlantic 

chaparral, 

AP4, AP5,AT4, 

AT5,

1, 2, 10, 23, 46 0,1409 0,0629 0,5778 0,3593

6 Mediterranean chaparral M4, M5 y M6 1, 2, 3, 10, 21, 46 0,1132 0,1095 0,5388 0,3517

7 Alpine and Atlantic 

chaparral 

AP6, AT6 1, 9, 27, 46 0,0778 0,0624 0,6069 0,3307

8 Atlantic chaparral-

woodland 

AT7 1, 2, 3, 11, 23, 45, 

46

0,0624 0,0029 0,2154 0,7817

9 Mediterranean chaparral-

woodland

M7 1, 2, 12, 21, 46 0,0464 0,0297 0,0074 0,9629

10 Alpine and Atlantic 

woodland 

AP8, AP9, AT8 y 

AT9

1, 9, 23, 45, 46 0,0663 0,0001 0,2632 0,7367

11 Mediterranean woodland M8 y M9 1, 3, 10, 21, 46 0,0707 0,1335 0,4865 0,3800

Table 3. Selected models, structure and forecasting accuracy estimated by means of Theil’s U coefficient for the index 

FPINDWI.

Code 

Group

Description Grouped 

models

Significant lags Theil’s Coefficient

U P.skew P.Variance P.covariance

1 Alpine and Atlantic grass AP1, AP2, AT1 y 

AT2

1, 3, 10, 21, 23, 

34, 45,

0,1666 0,0246 0,2734 0,7020

2 Alpine and Atlantic 

chaparral

AP3, AP4, AP5, 

AP6,

AT3, AT4, AT5, 

AT6

1, 3, 10, 21, 23, 

34, 46

0,1065 0,0203 0,4752 0,5045

3 Mediterranean grass M1 y M2 1, 3, 10, 21, 45, 46 0,1744 0,0699 0,3037 0,6264

4 Mediterranean grass-

chaparral

M3 1, 2, 3, 10, 21, 46 0,0472 0,0257 0,3459 0,6284

5 Mediterranean chaparral M4, M5 y M6 1, 3, 4, 10, 22, 42, 

46

0,0833 0,0725 0,2865 0,6410



THE RISK HAS BEEN MODELLED 
AND FORECAST FROM A SINGLE 

TYPE OF MODEL, THE 
AUTOREGRESSIVE MODEL. THIS 
SIMPLIFIES THE FORECASTING 
PROCEDURE, FOR THE RISK 
DEPENDS ONLY ON ITS OWN 

HISTORY

Code 

Group

Description Grouped 

models

Significant lags Theil’s Coefficient

U P.skew P.Variance P.covariance

6 Atlantic chaparral-

woodland

AT7 1, 3, 10, 34, 42, 46 0,0327 0,1316 0,2185 0,6499

7 Mediterranean chaparral-

woodland

M7 1, 3, 21,23, 46 0,0282 0,0090 0,1675 0,8235

8 Alpine woodland AP8, AP9 1, 3, 22, 42, 46 0,0629 0,0032 0,3416 0,6551

9 Atlantic woodland AT8 y AT9 1, 3, 16, 22, 34, 

42, 46

0,0500 0,0247 0,3445 0,6308

10 Mediterranean woodland M8 y M9 1, 3, 10, 21, 23, 46 0,0500 0,0416 0,2990 0,6594

In the open broadleaved deciduous woods with undergrowth (figure 2d) the autocorrelation function shows a clear pattern

in the FPINDWI index, while FPINDVI shows no significant autocorrelations at any time lag. In this ecosystem the phenological

cycle captured by the vegetation indices is the result of the admixture of the evergreen woods with undergrowth and the

deciduous trees. This is reflected in a great irregularity throughout the year, especially when using the FPINDVI, heavily

dependent on the phenological cycle. This is clearly shown in the autocorrelation function. Nonetheless, the FPINDVI series

does show a reduction of the risk in spring, when the foliage begins to grow, albeit less marked that the deciduous woods

without undergrowth. The same effect is seen in winter when the verdure of the undergrowth brings down the FPINDVI values

as compared with the previous ecosystem because it detects a higher load of live vegetation, undergrowth. Moreover the

FPINDWI follows a similar pattern as in the previous ecosystem, estimating the highest risk values in summer.

The results of the spatial analysis of the basic statistics and the autocorrelations

at 8 days, 6 months and one year validate a preliminary zoning based on the

bioclimatic zone and fuel model. The fuel models show very different means and

variances, indicating different risk levels and variability throughout the year.

The autocorrelation function, for its part, shows a different pattern from one

bioclimatic region to another, indicating a very different stability of the risk

pattern. For example the better autocorrelation at 1 year in the Mediterranean

zone is probably due to the fact that the summer drought is very regular and

constant, thereby conferring stability on the risk. In the north, on the other

hand, cooler and more humid, the water limitation is not an annual constant so

the risk pattern varies more from year to year. On the basis of these results we have drawn up a specific preliminary model

for each «fuel model-bioclimatic region» combination. In all cases the proposed models are autoregressive, modelling the

variable in terms solely of the past. The main differences between them lie in their structure (necessary risk-modelling

lags). In a second phase the models sharing the same structure were pooled and forecasts were made only for the FPINDWI in

view of its better forecasting accuracy. The 26 original classes were grouped in 10 for this index. The pure Atlantic and

Alpine grassland show a similar behaviour so they have been pooled into one class. The two tree fuel models (8 and 9) were

also pooled, while maintaining the distinction between bioclimatic zones. The chaparral with various levels of association

with grassland and Atlantic and Alpine woodland has been grouped, except for the Atlantic chaparral-woodland, which had

to be modelled separately. In the Mediterranean region chaparral was broken down into three classes according to its

association with grassland or trees.

All these models share a common structure with an autoregressive parameter in the very short term and another in the long

term. This shows that the risk value depends largely on its value in the recent past and shows a similar behaviour to the

previous year on these same dates. The significant negative medium-term relation found (except in the Atlantic chaparral-

woodland), can be explained by the bearing of the spring’s risk on the autumn’s risk. Wet springs generate a lot of biomass

and ipso facto a higher risk in late summer and autumn. The significant negative low value at 2.5 months found in the

models with grassland among the fuel might be due to the fact that this model captures a dynamic risk relation associated

with the short-term vegetative trend of some fuels, such as some grassland ecosystems.

Conclusions



In this study the fire risk has been modelled on the basis of two indices: the FPINDVI and the FPINDWI. In the Mediterranean

region both indices show an almost identical behaviour whereas in the Atlantic and Alpine regions the FPINDWI seems to give

a more faithful reflection of summer risk, probably because it is more related to moisture than photosynthesis. This index

also shows a better forecasting accuracy.

The study shows that the fuel type-bioclimatic region combination engenders classes with a characteristic risk behaviour. It

has also been possible to model and forecast the risk with a single model type, the autoregressive. This simplifies the

forecasting procedure because the risk depends only on its own history without taking auxiliary variables into account.

This study has integrated time series analysis into remote sensing and fire research. This is a groundbreaking and original

approach. In our opinion the results suggest that this methodology has a great potential in fire research and management.

These methodologies can also be easily extrapolated to other environmental contexts.
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BY WAY OF A GLOSSARY

FPI: Fire Potential Index.

FPINDWI: Fire Potential Index alculado con el índice NDWI.

FPINDVI: Fire Potential Index calculado con el índiceNDVI.

NDVI: Normalized Difference Vegetation Index.

NDWI: Normalized Vegetation Water Index.

AST: Análisis estadístico de series temporales

AR: Modelo autorregresivo.

MA: Modelo media-móvil.

ARMA: Modelo autorregresivo y media-móvil.

ARIMA: Modelo autorregresivo y media-móvil con término de integración.

MODIS: MODerate resolution Imaging Spectroradiometer.

ρr: Reflectancia en el canal rojo.

ρnir: Reflectancia en el canal infrarrojo cercano.

ρswir: Reflectancia en el canal SWIR 1.

Tmax: Temperatura máxima.

Hrel: Humedad relativa mínima.

H: Altitud.

Hcm10hrfrac: Humedad del combustible fino y muerto.

Cvcor: Carga de combustible susceptible de arder.
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