Search

Pricing ratchet equity-indexed annuities with early surrender risk in a CIR++ mode

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20130039459</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20131209105852.0</controlfield>
    <controlfield tag="008">131122e20130902esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20130016863</subfield>
      <subfield code="a">Wei, Xiao</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Pricing ratchet equity-indexed annuities with early surrender risk in a CIR++ mode</subfield>
      <subfield code="c">Xiao Wei, Marcellino Gaudenzi, Antonino Zanette</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">In this article we propose a lattice algorithm for pricing simple Ratchet equity-indexed annuities (EIAs) with early surrender risk and global minimum contract value when the asset value depends on the CIR++ stochastic interest rates. In addition we present an asymptotic expansion technique that permits us to obtain a first-order approximation formula for the price of simple Ratchet EIAs without early surrender risk and without a global minimum contract value. Numerical comparisons show the reliability of the proposed methods.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080591953</subfield>
      <subfield code="a">Métodos actuariales</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20090039629</subfield>
      <subfield code="a">Riesgo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080564322</subfield>
      <subfield code="a">Tarificación</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20130017464</subfield>
      <subfield code="a">Gaudenzi, Marcellino</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20130017471</subfield>
      <subfield code="a">Zanette, Antonino</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000239</subfield>
      <subfield code="t">North American actuarial journal</subfield>
      <subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
      <subfield code="x">1092-0277</subfield>
      <subfield code="g">02/09/2013 Tomo 17 Número 3 - 2013 , p. 229-252</subfield>
    </datafield>
  </record>
</collection>