Modeling and pricing longevity derivatives using stochastic mortality rates and the esscher transform
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20140017140</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20140520144325.0</controlfield>
<controlfield tag="008">140519e20140203esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">7</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20140008704</subfield>
<subfield code="a">Chuang, Shuo-Li</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Modeling and pricing longevity derivatives using stochastic mortality rates and the esscher transform</subfield>
<subfield code="c">Shuo-Li Chuang, Patrick L. Brockett</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">The Lee-Carter mortality model provides a structure for stochastically modeling mortality rates incorporating both time (year) and age mortality dynamics. Their model is constructed by modeling the mortality rate as a function of both an age and a year effect. Recently the MBMM model (Mitchell et al. 2013) showed the Lee Carter model can be improved by fitting with the growth rates of mortality rates over time and age rather than the mortality rates themselves. The MBMM modification of the Lee-Carter model performs better than the original and many of the subsequent variants. In order to model the mortality rate under the martingale measure and to apply it for pricing the longevity derivatives, we adapt the MBMM structure and introduce a Lévy stochastic process with a normal inverse Gaussian (NIG) distribution in our model. The model has two advantages in addition to better fit: first, it can mimic the jumps in the mortality rates since the NIG distribution is fat-tailed with high kurtosis, and, second, this mortality model lends itself to pricing of longevity derivatives based on the assumed mortality model. Using the Esscher transformation we show how to find a related martingale measure, allowing martingale pricing for mortality/longevity riskrelated derivatives. Finally, we apply our model to pricing a q-forward longevity derivative utilizing the structure proposed by Life and Longevity Markets Association.</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000239</subfield>
<subfield code="t">North American actuarial journal</subfield>
<subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
<subfield code="x">1092-0277</subfield>
<subfield code="g">03/02/2014 Tomo 18 Número 1 - 2014 </subfield>
</datafield>
<datafield tag="856" ind1=" " ind2=" ">
<subfield code="y">MÁS INFORMACIÓN</subfield>
<subfield code="u">mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A</subfield>
</datafield>
</record>
</collection>