Search

Portfolio optimization under solvency constraints : a dynamical approach

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20140041862</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20141203112917.0</controlfield>
    <controlfield tag="008">141113e20140901esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="245" ind1="0" ind2="0">
      <subfield code="a">Portfolio optimization under solvency constraints</subfield>
      <subfield code="b">: a dynamical approach</subfield>
      <subfield code="c">Sujith Asanga... [et al.]</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">We develop portfolio optimization problems for a nonlife insurance company seeking to find the minimum capital required that simultaneously satisfies solvency and portfolio performance constraints. Motivated by standard insurance regulations, we consider solvency capital requirements based on three criteria: ruin probability, conditional Value-at-Risk, and expected policyholder deficit ratio. We propose a novel semiparametric formulation for each problem and explore the advantages of implementing this methodology over other potential approaches. When liabilities follow a Lognormal distribution, we provide sufficient conditions for convexity for each problem. Using different expected return on capital target levels, we construct efficient frontiers when portfolio assets are modeled with a special class of multivariate GARCH models. We find that the correlation between asset returns plays an important role in the behavior of the optimal capital required and the portfolio structure. The stability and out-of-sample performance of our optimal solutions are empirically tested with respect to both the solvency requirement and portfolio performance, through a double rolling window estimation exercise</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080552701</subfield>
      <subfield code="a">Solvencia</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080611613</subfield>
      <subfield code="a">Modelos probabílisticos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080583972</subfield>
      <subfield code="a">Cartera de seguros</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080591212</subfield>
      <subfield code="a">Gestión de carteras</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20140026807</subfield>
      <subfield code="a">Asanga, Sujith</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000239</subfield>
      <subfield code="t">North American actuarial journal</subfield>
      <subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
      <subfield code="x">1092-0277</subfield>
      <subfield code="g">01/09/2014 Tomo 18 Número 3 - 2014 , p. 394-416</subfield>
    </datafield>
  </record>
</collection>