Search

Predictive modeling in long-term care insurance

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>Predictive modeling in long-term care insurance</title>
</titleInfo>
<name type="personal" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20130016856">
<namePart>Hartman, Brian M.</namePart>
<nameIdentifier>MAPA20130016856</nameIdentifier>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">usa</placeTerm>
</place>
<dateIssued encoding="marc">2016</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">The accurate prediction of long-term care insurance (LTCI) mortality, lapse, and claim rates is essential when making informed pricing and risk management decisions. Unfortunately, academic literature on the subject is sparse and industry practice is limited by software and time constraints. In this article, it is reviewed current LTCI industry modeling methodology, which is typically Poisson regression with covariate banding/modification and stepwise variable selection. It is tested the claim that covariate banding improves predictive accuracy, examine the potential downfalls of stepwise selection, and contend that the assumptions required for Poisson regression are not appropriate for LTCI data.</abstract>
<note type="statement of responsibility">Nathan R. Lally, Brian M. Hartman</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080602437">
<topic>Matemática del seguro</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080579258">
<topic>Cálculo actuarial</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20100014189">
<topic>Long term care insurance</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080555306">
<topic>Mortalidad</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080592059">
<topic>Modelos predictivos</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20090041721">
<topic>Distribución Poisson-Beta</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080591182">
<topic>Gerencia de riesgos</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080592578">
<topic>Política de precios</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20130012056">
<topic>Gastos médicos</topic>
</subject>
<classification authority="">6</classification>
<relatedItem type="host">
<titleInfo>
<title>North American actuarial journal</title>
</titleInfo>
<originInfo>
<publisher>Schaumburg : Society of Actuaries, 1997-</publisher>
</originInfo>
<identifier type="issn">1092-0277</identifier>
<identifier type="local">MAP20077000239</identifier>
<part>
<text>01/06/2016 Tomo 20 Número 2 - 2016 , p. 160-183</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">160712</recordCreationDate>
<recordChangeDate encoding="iso8601">20160817142057.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20160022155</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>