Search

An Insurance market simulation with both adverse and advantageous selection

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20170012542</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20170426130211.0</controlfield>
    <controlfield tag="008">170417e20170301esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">7</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20150013958</subfield>
      <subfield code="a">Chen, Leon</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="3">
      <subfield code="a">An Insurance market simulation with both adverse and advantageous selection</subfield>
      <subfield code="c">Leon Chen and Puneet Jaiprakash</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">The theory of adverse selection predicts that high-risk individuals are more likely to buy insurance than low-risk individuals if asymmetric information regarding individuals¿ risk type is present in the market. The theory of advantageous selection predicts the oppositea negative relationship between insurance coverage and risk type can be obtained when hidden knowledge in other dimensions (e.g., the degree of risk aversion) is present in addition to the risk type. Using the heterogeneity of insurance buyers in either risk type or risk aversion, we first introduce a classroom-based insurance market simulation game to show that adverse selection and advantageous selection can coexist. We then explain the underlying concepts using two methods: a mathematical framework based on expected utility theory and an empirical framework based on the results of the game itself. The game is easy to implement, reinforces textbook concepts by providing students a hands-on experience, and supplements current textbooks by bringing their content up to date with current research.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080591182</subfield>
      <subfield code="a">Gerencia de riesgos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20120015227</subfield>
      <subfield code="a">Comparadores de seguros</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080586294</subfield>
      <subfield code="a">Mercado de seguros</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077001748</subfield>
      <subfield code="t">Risk management & insurance review</subfield>
      <subfield code="d">Malden, MA : The American Risk and Insurance Association by Blackwell Publishing, 1999-</subfield>
      <subfield code="x">1098-1616</subfield>
      <subfield code="g">01/03/2017 Tomo 20 Número 1 - 2017 , p. 133-146</subfield>
    </datafield>
  </record>
</collection>