Search

Beyond the pearson correlation : heavy-tailed risks, weighted gini correlations, and a gini-type weighted insurance pricing model

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20170030546</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20170920172032.0</controlfield>
    <controlfield tag="008">170920e20170807bel|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20100003213</subfield>
      <subfield code="a">Furman, Edward</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Beyond the pearson correlation</subfield>
      <subfield code="b">: heavy-tailed risks, weighted gini correlations, and a gini-type weighted insurance pricing model </subfield>
      <subfield code="c">Edward Furman, Ricardas Zitikis</subfield>
    </datafield>
    <datafield tag="300" ind1=" " ind2=" ">
      <subfield code="a">24 p.</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Gini-type correlation coefficients have become increasingly important in a variety of research areas, including economics, insurance and finance, where modellingwith heavy-tailed distributions is of pivotal importance. In such situations, naturally, the classical Pearson correlation coefficient is of little use. On the other hand, it has been observed that when light-tailed situations are of interest, and hence when both the Gini-type and Pearson correlation coefficients are well defined and finite, these coefficients are related and sometimes even coincide. In general, understanding how these correlation coefficients are related has been an illusive task. In this paper, we put forward arguments that establish such a connection via certain regression-type equations. This, in turn, allows us to introduce a Gini-type weighted insurance pricing model that works in heavytailed situations and thus provides a natural alternative to the classical capital asset pricing model. We illustrate our theoretical considerations using several bivariate distributions, such as elliptical and those with heavy-tailed Pareto margins.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080554125</subfield>
      <subfield code="a">Ecuaciones</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080589004</subfield>
      <subfield code="a">Análisis matemático</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080564322</subfield>
      <subfield code="a">Tarificación</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080621285</subfield>
      <subfield code="a">Distribuciones estadísticas</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20170012085</subfield>
      <subfield code="a">Zitikis, Ricardas</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000420</subfield>
      <subfield code="t">Astin bulletin</subfield>
      <subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
      <subfield code="x">0515-0361</subfield>
      <subfield code="g">01/09/2017 Volumen 47 Número 3 - septiembre 2017 , p. 919-942</subfield>
    </datafield>
  </record>
</collection>