Search

Extreme value analysis of mortality at the oldest ages : a case study based on individual ages at death

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20170035053</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20220911211735.0</controlfield>
    <controlfield tag="008">171031e20170904esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">341</subfield>
    </datafield>
    <datafield tag="245" ind1="0" ind2="0">
      <subfield code="a">Extreme value analysis of mortality at the oldest ages</subfield>
      <subfield code="b">: a case study based on individual ages at death</subfield>
      <subfield code="c">Samuel Gbari... [et al.]</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">In this article, the force of mortality at the oldest ages is studied using the statistical tools from extreme value theory. A unique data basis recording all individual ages at death above 95 for extinct cohorts born in Belgium between 1886 and 1904 is used to illustrate the relevance of the proposed approach. No leveling off in the force of mortality at the oldest ages is found, and the analysis supports the existence of an upper limit to human lifetime for these cohorts. Therefore, assuming that the force of mortality becomes ultimately constant, that is, that the remaining lifetime tends to the Negative Exponential distribution as the attained age grows is a conservative strategy for managing life annuities.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080555306</subfield>
      <subfield code="a">Mortalidad</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080578848</subfield>
      <subfield code="a">Análisis de datos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080597733</subfield>
      <subfield code="a">Modelos estadísticos</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000239</subfield>
      <subfield code="t">North American actuarial journal</subfield>
      <subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
      <subfield code="x">1092-0277</subfield>
      <subfield code="g">04/09/2017 Tomo 21 Número 3 - 2017 , p. 397-416</subfield>
    </datafield>
  </record>
</collection>