Search

Optimum insurance contracts with background risk and higher-order risk attitudes

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20180031069</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20181108183136.0</controlfield>
    <controlfield tag="008">181107e20180903gbr|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">13</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20110012106</subfield>
      <subfield code="a">Chi, Yichun</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Optimum insurance contracts with background risk and higher-order risk attitudes</subfield>
      <subfield code="c">Yichun Chi, Wei Wei</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">This paper studies an optimal insurance problem in the presence of background risk from the perspective of an insured with higher-order risk attitudes. It introduces several useful dependence notions to model positive dependence structures between the insurable risk and background risk. Under these dependence structures, it compares insurance contracts of different forms in higher order risk attitudes and establishes the optimality of stop-loss insurance form. It also explicitly derives the optimal retention level. Finally, it carries out a comparative analysis and investigates how the change in the insured's initial wealth or background risk affects the optimal retention level.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080586294</subfield>
      <subfield code="a">Mercado de seguros</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080591182</subfield>
      <subfield code="a">Gerencia de riesgos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080584290</subfield>
      <subfield code="a">Contrato de seguro</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20180014345</subfield>
      <subfield code="a">Wei, Wei</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000420</subfield>
      <subfield code="t">Astin bulletin</subfield>
      <subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
      <subfield code="x">0515-0361</subfield>
      <subfield code="g">03/09/2018 Volumen 48 Número 3 - septiembre 2018 , p. 1025-1048</subfield>
    </datafield>
  </record>
</collection>