Histoire du hasard et de la simulation
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20190007238</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20190312173140.0</controlfield>
<controlfield tag="008">190308e20181203esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="0">MAPA20080240271</subfield>
<subfield code="a">Charpentier, Arthur</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Histoire du hasard et de la simulation</subfield>
<subfield code="c">Arthur Charpentier</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">Entendre "il y a 10% de chance de pluie aujourd'hui" ou "le test médical a une valeur prédictive positive de 75%" montre que les probabilités sont aujourd'hui partout. Une probabilité est une grandeur difficile à appréhender, mais incontournable quand on
cherche à théoriser et mesurer le hasard. Et si la théorie mathématique est finalement arrivée très tard, comme le rappelle Hacking [2006], cela n'a pas empêché l'assurance de se développer assez tôt, et d'avoir les premières tables (actuarielles) de mortalité avant même que la "probabilité de décès" ou "l'espérance de vie" n'ait de fondement mathématique. Et de la même manière, de nombreuses techniques ont été inventées pour "générer du hasard", avant l'explosion des méthodes dites de Monte-Cario, en parallèle avec le développement de l'informatique (et du foit qu'une machine pouvait générer du hasard)</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080582975</subfield>
<subfield code="a">Teoría matemática</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080625535</subfield>
<subfield code="a">Distribuciones de probabilidad</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080608606</subfield>
<subfield code="a">Simulación Monte Carlo</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080592059</subfield>
<subfield code="a">Modelos predictivos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080590741</subfield>
<subfield code="a">Estadística teórica</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080602437</subfield>
<subfield code="a">Matemática del seguro</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000789</subfield>
<subfield code="t">Risques : les cahiers de l'assurance</subfield>
<subfield code="d">Paris : FFSA, 1990-</subfield>
<subfield code="x">1152-9253</subfield>
<subfield code="g">03/12/2018 Número 116 - diciembre 2018 , p. 121-125</subfield>
</datafield>
</record>
</collection>