Endogenous insolvency in the Rothschild-Stiglitz model
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20190014083</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20190524085022.0</controlfield>
<controlfield tag="008">190517e20190301usa|||p |0|||b|eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20190006194</subfield>
<subfield code="a">Mimra, Wanda</subfield>
</datafield>
<datafield tag="245" ind1="0" ind2="0">
<subfield code="a">Endogenous insolvency in the Rothschild-Stiglitz model</subfield>
<subfield code="c">Wanda Mimra, Achim Wambach</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">Even 30 years after Rothschild and Stiglitz's (1976) seminal work on competitive insurance markets with adverse selection, existence and characterization of the equilibrium outcome are still an open issue. We model a basic extension to the Rothschild and Stiglitz model: we endogenize up-front capital of insurers. Under limited liability, low up-front capital gives rise to an aggregate endogenous insolvency risk, which introduces an externality among customers of an insurer (Faynzilberg, 2006). It is shown that an equilibrium with the second-best efficient Miyazaki-Wilson-Spence allocation always exists.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080586294</subfield>
<subfield code="a">Mercado de seguros</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080592042</subfield>
<subfield code="a">Modelos matemáticos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080558949</subfield>
<subfield code="a">Insolvencia</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080599096</subfield>
<subfield code="a">Selección de riesgos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080584344</subfield>
<subfield code="a">Control de riesgos</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20080119171</subfield>
<subfield code="a">Wambach, Achim</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000727</subfield>
<subfield code="t">The Journal of risk and insurance</subfield>
<subfield code="d">Nueva York : The American Risk and Insurance Association, 1964-</subfield>
<subfield code="x">0022-4367</subfield>
<subfield code="g">01/03/2019 Volumen 86 Número 1 - marzo 2019 , p. 165-181</subfield>
</datafield>
</record>
</collection>