Search

Modelling zero-inflated count data with a special case of the generalised poisson distribution

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20190032094</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20191106164710.0</controlfield>
    <controlfield tag="008">191106e20190902esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20110012229</subfield>
      <subfield code="a">Calderín-Ojeda, Enrique</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Modelling zero-inflated count data with a special case of the generalised poisson distribution</subfield>
      <subfield code="c">Enrique Calderín-Ojeda, Emilio Gómez Déniz,  Inmaculada Barranco Chamorro</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">A one-parameter version of the generalised Poisson distribution provided by Consul and Jain (1973) is considered in this paper. The distribution is unimodal with a zero vertex and over-dispersed. A generalised linear model related to this distribution is also presented. Its parameters can be estimated by using a Fisher-Scoring algorithm which is equivalent to iteratively reweighted least squares. Due to its flexibility and capacity to describe highly skewed data with an excessive number of zeros, the model is suitable to be applied in insurance settings as an alternative to the negative binomial and zero-inflated model.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080592011</subfield>
      <subfield code="a">Modelos actuariales</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080625535</subfield>
      <subfield code="a">Distribuciones de probabilidad</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20090041721</subfield>
      <subfield code="a">Distribución Poisson-Beta</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20190015165</subfield>
      <subfield code="a">Barranco Chamorro, Inmaculada</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20080660970</subfield>
      <subfield code="a">Gómez Déniz, Emilio</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000420</subfield>
      <subfield code="t">Astin bulletin</subfield>
      <subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
      <subfield code="x">0515-0361</subfield>
      <subfield code="g">02/09/2019 Volumen 49 Número 3 - septiembre 2019 , p. 689-707</subfield>
    </datafield>
  </record>
</collection>