Search

Estimation of insurance deductible demand under endogenous premium rates

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20200015932</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20200508135835.0</controlfield>
    <controlfield tag="008">200508e20200601usa|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20140011971</subfield>
      <subfield code="a">Woodard, Joshua D.</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Estimation of insurance deductible demand under endogenous premium rates</subfield>
      <subfield code="c">Joshua D. Woodard, Jing Yi</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Government-subsidized insurance is ubiquitous, yet estimation of demand in such markets remains challenging. The premium charged for a given deductible is determined by actuarial construction; thus, observed choice pairs are endogenous leading to biased estimation under standard econometric approaches. A theoretical model and simulation study are developed, and a new identification strategy proposed. An empirical application using Federal Crop Insurance Program-a $100 billion/year program-data reveals that demand is quite elastic after accounting for this endogeneity. Mistreatment of such endogeneity is likely partly responsible for pervasive faulty findings of inelastic insurance demand in related applications. Policy implications are also discussed.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080584580</subfield>
      <subfield code="a">Demanda de seguros</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080586294</subfield>
      <subfield code="a">Mercado de seguros</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602642</subfield>
      <subfield code="a">Modelos de simulación</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602659</subfield>
      <subfield code="a">Modelos econométricos</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20200010968</subfield>
      <subfield code="a">Yi, Jing </subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000727</subfield>
      <subfield code="t">The Journal of risk and insurance</subfield>
      <subfield code="d">Nueva York : The American Risk and Insurance Association, 1964-</subfield>
      <subfield code="x">0022-4367</subfield>
      <subfield code="g">01/06/2020 Volumen 87 Número 2 - junio 2020 , p. 477-500</subfield>
    </datafield>
  </record>
</collection>