Search

Efficient nested simulation for conditional tail expectation of variable annuities

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20200018087</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20200602122748.0</controlfield>
    <controlfield tag="008">200528e20200601usa|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20200012610</subfield>
      <subfield code="a">Dang, Ou </subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Efficient nested simulation for conditional tail expectation of variable annuities</subfield>
      <subfield code="c">Ou Dang, Mingbin Feng, Mary R. Hardy</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Monte Carlo simulationsin particular, nested Monte Carlo simulationsare commonly used in variable annuity (VA) risk modeling. However, the computational burden associated with nested simulations is substantial. We propose an Importance-Allocated Nested Simulation (IANS) method to reduce the computational burden, using a two-stage process. The first stage uses a low-cost analytic proxy to identify the tail scenarios most likely to contribute to the Conditional Tail Expectation risk measure. In the second stage we allocate the entire inner simulation computational budget to the scenarios identified in the first stage. Our numerical experiments show that, in the VA context, IANS can be up to 30 times more efficient than a standard Monte Carlo experiment, measured by relative mean squared errors, when both are given the same computational budget.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080608606</subfield>
      <subfield code="a">Simulación Monte Carlo</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602642</subfield>
      <subfield code="a">Modelos de simulación</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080592042</subfield>
      <subfield code="a">Modelos matemáticos</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20200012658</subfield>
      <subfield code="a">Feng, Mingbin </subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20080653552</subfield>
      <subfield code="a">Hardy, Mary R.</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000239</subfield>
      <subfield code="t">North American actuarial journal</subfield>
      <subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
      <subfield code="x">1092-0277</subfield>
      <subfield code="g">01/06/2020 Tomo 24 Número 2 - 2020 , p. 187-210</subfield>
    </datafield>
  </record>
</collection>