Size-biased risk measures of compound sums
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20200040255</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20210104134910.0</controlfield>
<controlfield tag="008">201228e20201201usa|||p |0|||b|eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20080096434</subfield>
<subfield code="a">Denuit, Michel</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Size-biased risk measures of compound sums</subfield>
<subfield code="c">Michel Denuit</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">The size-biased, or length-biased transform is known to be particularly useful in insurance risk measurement. The case of continuous losses has been extensively considered in the actuarial literature. Given their importance in insurance studies, this article concentrates on compound sums. The zero-augmented distributions that naturally appear in the individual model of risk theory are obtained as particular cases when the claim frequency distribution is concentrated on {0, 1}. The general results derived in this article help actuaries to understand how risk measurement proceeds because the formulas make explicit the loadings corresponding to each source of randomness. Some simple and explicit expressions are obtained when losses are modeled by independent compound Poisson sums and compound mixed Poisson sums, including the compound negative binomial sums. Extensions to correlated risks are briefly discussed in the concluding section.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080582951</subfield>
<subfield code="a">Teoría del riesgo</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20090041721</subfield>
<subfield code="a">Distribución Poisson-Beta</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080602437</subfield>
<subfield code="a">Matemática del seguro</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000239</subfield>
<subfield code="t">North American actuarial journal</subfield>
<subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
<subfield code="x">1092-0277</subfield>
<subfield code="g">01/12/2020 Tomo 24 Número 4 - 2020 , p. 512-532</subfield>
</datafield>
</record>
</collection>