Search

Mortality forecasting with a spatially penalized smoothed VAR model

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20210005503</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20220911211044.0</controlfield>
    <controlfield tag="008">210218e20210101bel|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20210003059</subfield>
      <subfield code="a">Chang, Le </subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Mortality forecasting with a spatially penalized smoothed VAR model</subfield>
      <subfield code="c">Le Chang, Yanlin Shi</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">This paper investigates a high-dimensional vector-autoregressive (VAR) model in mortality modeling and forecasting. We propose an extension of the sparse VAR (SVAR) model fitted on the log-mortality improvements, which we name spatially penalized smoothed VAR (SSVAR). By adaptively penalizing the coefficients based on the distances between ages, SSVAR not only allows a flexible data-driven sparsity structure of the coefficient matrix but simultaneously ensures interpretable coefficients including cohort effects. Moreover, by incorporating the smoothness penalties, divergence in forecast mortality rates of neighboring ages is largely reduced, compared with the existing SVAR model. A novel estimation approach that uses the accelerated proximal gradient algorithm is proposed to solve SSVAR efficiently. Similarly, we propose estimating the precision matrix of the residuals using a spatially penalized graphical Lasso to further study the dependency structure of the residuals. Using the UK and France population data, we demonstrate that the SSVAR model consistently outperforms the famous LeeCarter, HyndmanUllah, and two VAR type models in forecasting accuracy. Finally, we discuss the extension of the SSVAR model to multi-population mortality forecasting with an illustrative example that demonstrates its superiority in forecasting over existing approaches.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080555306</subfield>
      <subfield code="a">Mortalidad</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080592011</subfield>
      <subfield code="a">Modelos actuariales</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2=" ">
      <subfield code="0">MAPA20220007825</subfield>
      <subfield code="a">Data driven</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20210003066</subfield>
      <subfield code="a">Shi, Yanlin </subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000420</subfield>
      <subfield code="t">Astin bulletin</subfield>
      <subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
      <subfield code="x">0515-0361</subfield>
      <subfield code="g">01/01/2021 Volumen 51 Número 1 - enero 2021 , p. 161-189</subfield>
    </datafield>
  </record>
</collection>