Search

A Gamma moving average process for modelling dependence across development years in run-off triangles

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20210005534</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20210219145604.0</controlfield>
    <controlfield tag="008">210219e20210101bel|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20090003729</subfield>
      <subfield code="a">Nieto-Barajas, Luis E.</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="2">
      <subfield code="a">A Gamma moving average process for modelling dependence across development years in run-off triangles</subfield>
      <subfield code="c">Luis E. Nieto-Barajas, Rodrigo S. Targino</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">We propose a stochastic model for claims reserving that captures dependence along development years within a single triangle. This dependence is based on a gamma process with a moving average form of order p = 0 which is achieved through the use of poisson latent variables.We carry out Bayesian inference on model parameters and borrow strength across several triangles, coming from different lines of businesses or companies, through the use of hierarchical priors. We carry out a simulation study as well as a real data analysis. Results show that reserve estimates, for the real data set studied, are more accurate with our gamma dependence model as compared to the benchmark over-dispersed poisson that assumes independence.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080586447</subfield>
      <subfield code="a">Modelo estocástico</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20090041721</subfield>
      <subfield code="a">Distribución Poisson-Beta</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080554286</subfield>
      <subfield code="a">Estimación</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20210003110</subfield>
      <subfield code="a">Targino, Rodrigo S. </subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000420</subfield>
      <subfield code="t">Astin bulletin</subfield>
      <subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
      <subfield code="x">0515-0361</subfield>
      <subfield code="g">01/01/2021 Volumen 51 Número 1 - enero 2021 , p. 245-266</subfield>
    </datafield>
  </record>
</collection>