Simultaneous borrowing of information across space and time for pricing insurance contracts : an application to rating crop insurance policies

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="" xmlns:xsi="" xsi:schemaLocation="">
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20210005701</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20210302165656.0</controlfield>
    <controlfield tag="008">210219e20210301usa|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">329</subfield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20210003226</subfield>
      <subfield code="a">Liu, Yong</subfield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Simultaneous borrowing of information across space and time for pricing insurance contracts</subfield>
      <subfield code="b">: an application to rating crop insurance policies</subfield>
      <subfield code="c">Yong Liu, Alan P. Ker</subfield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Changing climate and technology can often lead to nonstationary losses across both time and space for a variety of insurance lines including property, catastrophe, health, and life. As a result, naive estimation of premium rates using past losses will tend to be biased. We present three successively flexible datadriven methodologies to nonparametrically smooth across both space and time simultaneously, thereby appropriately incorporating possibly nonidentically distributed data into the rating process. We apply these methodologies in estimating U.S. crop insurance premium rates. Crop insurance, with global premiums totaling $4.1 trillion in 2018, is an interesting application as losses exhibit both temporal and spatial nonstationarity. We find significant borrowing of information across both time and space. We also find all three methodologies improve both the stability and accuracy of crop insurance premium rates. The proposed methods may be of relevance for other lines of insurance characterized by spatial and/or temporal nonstationary losses.</subfield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080587857</subfield>
      <subfield code="a">Seguro de cosechas</subfield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080586294</subfield>
      <subfield code="a">Mercado de seguros</subfield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080548575</subfield>
      <subfield code="a">Pérdidas</subfield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080584290</subfield>
      <subfield code="a">Contrato de seguro</subfield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080578350</subfield>
      <subfield code="a">Tarifa de primas</subfield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20210003745</subfield>
      <subfield code="a">Ker, Alan P. </subfield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000727</subfield>
      <subfield code="t">The Journal of risk and insurance</subfield>
      <subfield code="d">Nueva York : The American Risk and Insurance Association, 1964-</subfield>
      <subfield code="x">0022-4367</subfield>
      <subfield code="g">01/03/2021 Volumen 88 Número 1 - marzo 2021 , p. 231-257</subfield>