A Temporal fusion approach for video classifcation with convolutional and LSTM neural networks applied to violence detection

A Temporal fusion approach for video classifcation with convolutional and LSTM neural networks applied to violence detection
Record image
MARC record
Tag12Value
LDR  00000cab a2200000 4500
001  MAP20210011740
003  MAP
005  20220911190022.0
008  210413e20210215esp|||p |0|||b|spa d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎922.134
100  ‎$0‎MAPA20200022954‎$a‎Oliveira Lima, Jean Phelipe de
24512‎$a‎A Temporal fusion approach for video classifcation with convolutional and LSTM neural networks applied to violence detection‎$c‎Jean Phelipe de Oliveira Lima, Carlos Maurício Seródio Figueiredo
520  ‎$a‎In modern smart cities, there is a quest for the highest level of integration and automation service. In the surveillance sector, one of the main challenges is to automate the analysis of videos in real-time to identify critical situations. This paper presents intelligent models based on Convolutional Neural Networks (in which the MobileNet, InceptionV3 and VGG16 networks had used), LSTM networks and feedforward networks for the task of classifying videos under the classes "Violence" and "Non-Violence", using for this the RLVS database. Di rent data representations held used according to the Temporal Fusion techniques. The best outcome achieved was 0.91 and 0.90 of Accuracy and F1-Score, respectively, a higher result compared to those found in similar researches for works conducted on the same database.
650 4‎$0‎MAPA20080611200‎$a‎Inteligencia artificial
650 4‎$0‎MAPA20080568009‎$a‎Automatización
650 4‎$0‎MAPA20080552954‎$a‎Violencia
7001 ‎$0‎MAPA20200023012‎$a‎Seródio Figueiredo, Carlos Maurício
7730 ‎$w‎MAP20200034445‎$t‎Revista Iberoamericana de Inteligencia Artificial‎$d‎IBERAMIA, Sociedad Iberoamericana de Inteligencia Artificial , 2018-‎$x‎1988-3064‎$g‎15/02/2021 Volumen 24 Número 67 - febrero 2021 , p. 40-50
856  ‎$q‎application/pdf‎$w‎1110631‎$y‎Recurso electrónico / Electronic resource