On the risk consistency and monotonicity of ruin theory
<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>On the risk consistency and monotonicity of ruin theory</title>
</titleInfo>
<name type="personal" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20220002547">
<namePart>Constantinescu, Corina</namePart>
<nameIdentifier>MAPA20220002547</nameIdentifier>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">esp</placeTerm>
</place>
<dateIssued encoding="marc">2022</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">Setting a proper minimum capital requirement is one of the most fundamental problems in the insurance industry. Ruin theory proposes a solution to this problem by identifying the minimum capital that a company needs to hold in order to stay solvent with a high probability. In this note we discuss the ruin theory risk consistency. More precisely we show that the ruin-consistent Value-at-Risk (VaR) is not continuous in probability, in Lp,0=p<8, and in weak convergence. Furthermore, it is not a monotone measure of risk.</abstract>
<note type="statement of responsibility">Hirbod Assa, Corina Constantinescu </note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080601522">
<topic>Evaluación de riesgos</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080603069">
<topic>Probabilidad de ruina</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080579258">
<topic>Cálculo actuarial</topic>
</subject>
<classification authority="">6</classification>
<relatedItem type="host">
<titleInfo>
<title>European Actuarial Journal</title>
</titleInfo>
<originInfo>
<publisher>Cham, Switzerland : Springer Nature Switzerland AG, 2021-2022</publisher>
</originInfo>
<identifier type="local">MAP20220007085</identifier>
<part>
<text>06/12/2021 Volúmen 11 - Número 2 - diciembre 2021 , p. 709-715</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">220310</recordCreationDate>
<recordChangeDate encoding="iso8601">20220310135322.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20220008068</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>