Search

Rough-Fuzzy Support Vector Clustering with OWA Operators

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>Rough-Fuzzy Support Vector Clustering with OWA Operators</title>
</titleInfo>
<name type="personal" usage="primary" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20220004800">
<namePart>Saltos Atiencia, Ramiro</namePart>
<nameIdentifier>MAPA20220004800</nameIdentifier>
</name>
<name type="personal" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20220004817">
<namePart>Weber, Richard</namePart>
<nameIdentifier>MAPA20220004817</nameIdentifier>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">esp</placeTerm>
</place>
<dateIssued encoding="marc">2022</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
<internetMediaType>application/pdf</internetMediaType>
</physicalDescription>
<abstract displayLabel="Summary">Rough-Fuzzy Support Vector Clustering (RFSVC) is a novel soft computing derivative of the classical Support Vector Clustering (SVC) algorithm, which has been used already in many real-world applications. RFSVC's strengths are its ability to handle arbitrary cluster shapes, identify the number of clusters, and e?ectively detect outliers by the means of membership degrees. However, its current version uses only the closest support vector of each cluster to calculate outliers' membership degrees, neglecting important information that remaining support vectors can contribute. We present a novel approach based on the ordered weighted average (OWA) operator that aggregates information from all cluster representatives when computing ?nal membership degrees and at the same time allows a better interpretation of the cluster structures found. Particularly, we propose the induced OWA using weights determined by the employed kernel function. The computational experiments show that our approach outperforms the current version of RFSVC as well as alternative techniques ?xing the weights of the OWA operator while maintaining the level of interpretability of membership degrees for detecting outliers.

</abstract>
<accessCondition type="use and reproduction">La copia digital se distribuye bajo licencia "Attribution 4.0 International (CC BY NC 4.0)"</accessCondition>
<note type="statement of responsibility">Ramiro Saltos Atiencia, Richard Weber</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080611200">
<topic>Inteligencia artificial</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080544638">
<topic>Minería</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20210010477">
<topic>Datos brutos de investigación</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20200017172">
<topic>Análisis vectorial</topic>
</subject>
<classification authority="">922.134</classification>
<relatedItem type="host">
<titleInfo>
<title>Revista Iberoamericana de Inteligencia Artificial</title>
</titleInfo>
<originInfo>
<publisher> : IBERAMIA, Sociedad Iberoamericana de Inteligencia Artificial , 2018-</publisher>
</originInfo>
<identifier type="issn">1988-3064</identifier>
<identifier type="local">MAP20200034445</identifier>
<part>
<text>02/05/2022 Volumen 25 Número 69 - mayo 2022 , p. 42-56</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">220509</recordCreationDate>
<recordChangeDate encoding="iso8601">20220911185521.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20220013901</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>