Search

CNN-based Approach for Robust Detection of Copy-Move Forgery in Images

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>CNN-based Approach for Robust Detection of Copy-Move Forgery in Images</title>
</titleInfo>
<name type="personal" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20240020873">
<namePart>S., Arivazhagan </namePart>
<nameIdentifier>MAPA20240020873</nameIdentifier>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">esp</placeTerm>
</place>
<dateIssued encoding="marc">2024</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">With the rise of high-quality forged images on social media and other platforms, there is a need for algorithms that can recognize the originality. Detecting copy-move forgery is essential for ensuring the authenticity and integrity of digital images, preventing fraud and deception, and upholding the law. Copy-move forgery is the act of duplicating and pasting a portion of an image to another location within the same image. To address these issues, we propose two deep learning approaches - one using a custom architecture and the other using transfer learning. We test our method against a number of benchmark datasets and demonstrate that, in terms of accuracy and robustness against various types of image distortions, it outperforms current state-of-the-art methods. Our proposed method has applications in digital forensics, copyright defence, and image authenticity</abstract>
<note type="statement of responsibility">Arivazhagan S. [et al.]</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080541064">
<topic>Fraude</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080545932">
<topic>Análisis</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080541408">
<topic>Imagen</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080579975">
<topic>Derechos de autor</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20240002428">
<topic>Autentificación biométrica</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080611200">
<topic>Inteligencia artificial</topic>
</subject>
<classification authority="">922.131</classification>
<location>
<url displayLabel="electronic resource" usage="primary display">https://journal.iberamia.org/index.php/intartif/article/view/1078</url>
</location>
<relatedItem type="host">
<titleInfo>
<title>Revista Iberoamericana de Inteligencia Artificial</title>
</titleInfo>
<originInfo>
<publisher> : IBERAMIA, Sociedad Iberoamericana de Inteligencia Artificial , 2018-</publisher>
</originInfo>
<identifier type="issn">1988-3064</identifier>
<identifier type="local">MAP20200034445</identifier>
<part>
<text>19/06/2024 Volumen 27 Número 73 - junio 2024 , p.80-91</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">240829</recordCreationDate>
<recordChangeDate encoding="iso8601">20240829122008.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20240013301</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>