Search

Machine learning with High-Cardinality categorical features in actuarial applications

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>Machine learning with High-Cardinality categorical features in actuarial applications</title>
</titleInfo>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">bel</placeTerm>
</place>
<dateIssued encoding="marc">2024</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">High-cardinality categorical features are pervasive in actuarial data (e.g., occupation in commercial property insurance). Standard categorical encoding methods like one-hot encoding are inadequate in these settings</abstract>
<note type="statement of responsibility">Benjamin Avanzi [et al.]</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080627904">
<topic>Ciencias Actuariales y Financieras</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20170005476">
<topic>Machine learning</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080549497">
<topic>Actuarios</topic>
</subject>
<classification authority="">6</classification>
<location>
<url displayLabel="electronic resource" usage="primary display">https://www.cambridge.org/core/journals/astin-bulletin-journal-of-the-iaa/article/machine-learning-with-highcardinality-categorical-features-in-actuarial-applications/C910580D669A903DA6CC00AE6CDCB4DE</url>
</location>
<relatedItem type="host">
<titleInfo>
<title>Astin bulletin</title>
</titleInfo>
<originInfo>
<publisher>Belgium : ASTIN and AFIR Sections of the International Actuarial Association</publisher>
</originInfo>
<identifier type="issn">0515-0361</identifier>
<identifier type="local">MAP20077000420</identifier>
<part>
<text>15/05/2024 Volumen 54 Número 2 - mayo 2024 , p.213-238</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">240830</recordCreationDate>
<recordChangeDate encoding="iso8601">20240830123535.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20240013547</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>