Search

Machine learning with High-Cardinality categorical features in actuarial applications

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20240013547</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20240830123535.0</controlfield>
    <controlfield tag="008">240830e20240515bel|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Machine learning with High-Cardinality categorical features in actuarial applications</subfield>
      <subfield code="c">Benjamin Avanzi [et al.]</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">High-cardinality categorical features are pervasive in actuarial data (e.g., occupation in commercial property insurance). Standard categorical encoding methods like one-hot encoding are inadequate in these settings</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080627904</subfield>
      <subfield code="a">Ciencias Actuariales y Financieras</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20170005476</subfield>
      <subfield code="a">Machine learning</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080549497</subfield>
      <subfield code="a">Actuarios</subfield>
    </datafield>
    <datafield tag="700" ind1=" " ind2=" ">
      <subfield code="0">MAPA20090029927</subfield>
      <subfield code="a">Avanzi, Benjamin</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000420</subfield>
      <subfield code="g">15/05/2024 Volumen 54 Número 2 - mayo 2024 , p.213-238</subfield>
      <subfield code="x">0515-0361</subfield>
      <subfield code="t">Astin bulletin</subfield>
      <subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
    </datafield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="u">https://www.cambridge.org/core/journals/astin-bulletin-journal-of-the-iaa/article/machine-learning-with-highcardinality-categorical-features-in-actuarial-applications/C910580D669A903DA6CC00AE6CDCB4DE</subfield>
    </datafield>
  </record>
</collection>