Search

Mack's estimator motivated by large exposure asymptotics in a compound poisson setting

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20240013578</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20240830125827.0</controlfield>
    <controlfield tag="008">240830e20240515bel|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20240021092</subfield>
      <subfield code="a">Engler, Nils </subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Mack's estimator motivated by large exposure asymptotics in a compound poisson setting</subfield>
      <subfield code="c">Nils Engler, Filip Lindskog</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">The distribution-free chain ladder of Mack justified the use of the chain ladder predictor and enabled Mack to derive an estimator of conditional mean squared error of prediction for the chain ladder predictor. Classical insurance loss models, that is of compound Poisson type, are not consistent with Mack's distribution-free chain ladder. However, for a sequence of compound Poisson loss models indexed by exposure (e.g., number of contracts), we show that the chain ladder predictor and Mack's estimator of conditional mean squared error of prediction can be derived by considering large exposure asymptotics. Hence, quantifying chain ladder prediction uncertainty can be done with Mack's estimator without relying on the validity of the model assumptions of the distribution-free chain ladder</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080627904</subfield>
      <subfield code="a">Ciencias Actuariales y Financieras</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080586294</subfield>
      <subfield code="a">Mercado de seguros</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080567118</subfield>
      <subfield code="a">Reclamaciones</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080545338</subfield>
      <subfield code="a">Seguros</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080590567</subfield>
      <subfield code="a">Empresas de seguros</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20240021108</subfield>
      <subfield code="a">Filip Lindskog</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000420</subfield>
      <subfield code="g">15/05/2024 Volumen 54 Número 2 - mayo 2024 , p. 310-326</subfield>
      <subfield code="x">0515-0361</subfield>
      <subfield code="t">Astin bulletin</subfield>
      <subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
    </datafield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="u">https://www.cambridge.org/core/journals/astin-bulletin-journal-of-the-iaa/article/macks-estimator-motivated-by-large-exposure-asymptotics-in-a-compound-poisson-setting/C1FC729CC7767F8B21F1AFD916E68C32</subfield>
    </datafield>
  </record>
</collection>