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Abstract
A common feature in the modelling and extrapolation of the trends in mortality rates 
over time, based on fitted parametric structures, has tended to involve the treatment 
of a structured fitted main effects period component (with possibly a cohort compo-
nent) as a random effects time series. In this paper, we follow the lead of Haberman 
and Renshaw (Insurance Math Econ 50:309–333, 2012) and other authors in model-
ling and forecasting mortality improvement rates over time, rather than mortality 
rates. In this context, we assume linear parametric structures for mortality improve-
ment rates, and we examine the feasibility of modelling the main period effects (and 
possibly any cohort effects) as a random effect from the outset. We argue that this 
leads to a more unified approach to model fitting and extrapolation.

Keywords Mortality improvements · Random effects modelling · Hierarchical 
generalised linear modelling · Age heteroscedasticity · Mortality forecasting

1 Introduction

One of the themes of the recent longevity related academic literature has been the 
consideration of the modelling of mortality improvement rates (MIR), rather than 
mortality rates (MR). One of the motivations has been a practical one, as noted by 
Haberman and Renshaw [6], Denuit and Trufin [4] and Hunt and Villegas [10], 
inter alia. Many standard life tables used by actuaries (and required by regulators) 
for annuity pricing or reserving are increasingly based on an assumption about the 
dynamics of suitably defined mortality improvement rates. Thus, Haberman and 
Renshaw [6] and Denuit and Trufin [4] specifically mention current actuarial prac-
tice in Austria, Belgium, Denmark, Switzerland, UK and US that uses mortality 
improvement rates as a building block. Further we note that, in the UK, the Continu-
ous Mortality Investigation Bureau (CMI) has recently developed and recommended 
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a new mortality projection model based on improvement rates: see CMI [3]. These 
developments indicate a need for a sound theoretical foundation for the modelling 
of improvement rates—and this has led to a stream of contributions to the literature. 
We will refer to these different contributions, as appropriate, in the main body of the 
paper.

A second motivation for the interest of the academic literature has been the recog-
nition that there may be theoretical and practical advantages in modelling improve-
ment rates. A key issue in modelling mortality dynamics is understanding the domi-
nant downwards time trend that has manifested itself over at least the last 70 years. 
It is well known in time series work that there are advantages if the underlying pro-
cess that generates the time trend is time-invariant. One of the common methods 
in time series analysis of transforming a so-called non-stationary time series into a 
stationary one is by de-trending the series i.e. taking first differences: see Li et al. 
[13], Haberman and Renshaw [6, 7], Mitchell et  al. [14], Hunt and Villegas [10] 
and Bohk-Ewald and Rau [1]. This transformation implies that the mortality trend 
relates to the previous year’s mortality rates rather than the trend in a hidden mor-
tality factor, like �t in the seminal model of Lee and Carter [11]. As we will show 
below, the definition of mortality improvement rates is linked to this transformation.

A further point noted by Hunt and Villegas [10] is that by considering mortal-
ity improvements from national data sets, inferences can be made about mortality 
trends in smaller sub-populations, although this requires consideration of longevity 
basis risk (see [8], and [19] for a further discussion).

We refer the reader to the text by Lee et al. [12] for an account of the general back-
ground to the theoretical modelling aspects underpinning this paper (Sects.  4–6), 
where we develop generalised linear MIR and MR models by the inclusion of ran-
dom effects. Quoting from the epilogue to this text (p 360) “We [the authors] sus-
pect that there may be many other new extensions waiting to be explored where the 
ideas underlying this book could be usefully exploited”. We believe that this paper 
provides such an extension.

All the applications presented in this paper were produced using the computer 
package R. Outline details are given in “Appendix II”.

Our main contribution is to show that, by attributing random effects to the period 
and cohort components (or just the period components) of a main effects age-
period-cohort structured linear predictor from the outset, it is possible to present 
a comprehensive self-contained process for modelling and extrapolating mortality 
improvement rates, which incorporates structured dispersion and an apparent self-
selecting time series. We show that this methodology also extends to the modelling 
and extrapolation of mortality rates provided that the predictor structure is linear. 
We argue that this methodological framework leads to a more unified approach to 
model fitting and extrapolation as a result of treating the time element as a random 
effect from the outset, thereby impacting both fitting and extrapolation stages.

The paper is arranged as follows. In Sect. 2, we investigate the inter-relationship 
between two alternative measures of mortality improvement rates. In Sect.  3, we 
focus on a direct and indirect method of modelling mortality improvement rates with 
specific reference to the linear age-period-cohort structure, and suggest the inclusion 
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of a random effects period component. In Sects. 4 and 5, we describe a method of 
fitting respectively Normal-Normal and Poisson-Normal generalised linear mixed 
models, which incorporate fixed and random effects components, and have an addi-
tional provision for the joint modelling of a structured dispersion parameter. In 
Sect. 6 we indicate how a simple structured time series can also be incorporated into 
the fitting process. In each of Sects. 4–6, we include an investigation into the poten-
tial of the respective methodology by applying it to the recent UK male mortality 
experience. Sections 7 and 8 provide a discussion and some concluding comments.

2  Mortality improvement statistics

Ideally, in continuous time, age specific mortality improvement rates are quantified 
by the partial derivative of the log-mortality rate, either with respect to period (cal-
endar-year) or with respect to birth-year (cohort). Given that the former approach is 
the most commonly used, we assume this to be the case here unless stated otherwise.

Consider a rectangular age-period Lexis plane divided into annual cells support-
ive of mortality data.(

dxt, ext,�xt

)
 : age x = x1, x2,… , xk , period t = t1, t2,… , tn , and birth-year s = t − x ,  

where dxt, reported number of deaths ; e
xt
, matching central exposure to the risk of death ; 

�xt, prior (0∕1) weights to indicate empty/non - empty data cells and denote 
mx,t, the central rate of mortality.

Assuming central rates of mortality throughout, two superficially different mor-
tality improvement rate statistics have been proposed in the literature and are of 
interest:

Statistic I: yxt =
−Δtmx,t

(mx,t−1+mx,t)∕2
= 2

(1−mx,t∕mx,t−1)
(1+mx,t∕mx,t−1)

 , and
Statistic II: zxt = Δt logmx,t = logmx,t − logmx,t−1 where Δt is the differencing 

operator and the statistics are computed using the estimate m̂x,t = dxt
/
ext ; see Haber-

man and Renshaw [6] and Mitchell et al. [14] respectively for applications.
We investigate next the precise nature of the difference between the two statistics. 

Firstly, we note that while both statistics are discrete representations of the partial 
derivative of logmx,t , Statistic I is based on the actual partial derivative itself. Sec-
ondly, we recall the monotonic increasing characteristic of the log function. Then a 
comparison of −Δtmx,t with Δt logmx,t , which determines the respective signs of the 
two statistics, associates respectively positive and negative values with actual mor-
tality improvements. In addition, exploratory scatter plots of the two statistics, using 
any rectangular age-period UKmale mortality data array, are found to exhibit perfect 
negative correlation which implies an exact connection between the two statistics.

Indeed, a mathematical tractable relationship between the two statistics reads as 
follows:

yxt = 2

(
1 − mx,t

/
mx,t−1

)
(
1 + mx,t

/
mx,t−1

) = 2

(
1 − exp

(
Δt logmx,t

))
(
1 + exp

(
Δt logmx,t

)) = 2 tanh
(
−zx,t

/
2
)
.
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Correcting for the disparity in the sign of zxt the relationship connecting the two 
statistics reads yxt = 2 tanh

(
zxt
/
2
)
 so that

a convergent power series comprising odd powers only, with the implication that 
the absolute value of yxt is less than the matching absolute value of zxt and hence the 
greater accuracy in general. Unless stated otherwise we use Statistic I.

2.1  An application

We utilise the UK male mortality data set, covering the period 1960–2016, ages 0–102, 
and comprising annual death counts and matching central exposures to the risk of 
death, as compiled by the Human Mortality Database [9]. By truncating the data at the 
upper age limit of 102, possible complications arising from the irregular nature of the 
lost fragments including zero entries are avoided. In addition, the number of any such 
fragments lost is extremely small, especially for the early calendar years.

One aspect of the computed empirical MIRs concerns the nature of any information 
provided in respect of patterns in the resulting age profiles. In order to investigate this 
feature, we have computed and displayed the n-year empirical MIR rolling-averages 
for a range of values of n. One such set of results for the 5-year MIR rolling averages, 
expressed as percentages, and centred on the periods 2014(−1)2006 are depicted in 
the various panels of Fig. 1. (We make frequent use of the notation a(c)b to denote 
sequences of numbers ranging from a to b at intervals of c). In addition we have fitted 
and display a smooth-spline curve in each panel (using the R smooth.spline function 
with a parameter setting of 0.8). We note an identifiable crude pattern in each panel 
subject to a degree of variation between (annually) adjacent panels. We return to this 
issue later in Sect. 4.

3  Mortality improvement rates and random effects

We start from the premise, implicit in Hunt and Villegas [10] that, in continuous time, 
the MIR is quantified by

(with the negative sign ensuring that improvement is positive and deterioration neg-
ative). We focus on linear parametric predictor structures �x,t and specifically the famil-
iar main effects APC (age-period-cohort) structure, so that

zxt = 2 tanh−1
(
yxt

/
2
)
= log

(
1 + yxt

/
2

1 − yxt
/
2

)
= yxt +

2

3

(yxt
2

)3

+ o
(
y5
xt

)
;
(yxt
2

)2

< 1

−
�

�t
logmx,t

(1)−
�

�t
logmx,t = �x,t = �x + �t−x + �t
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comprising respectively age, birth-year and period main effects: while partial inte-
gration gives

with the �̃� corresponding discrete version

as listed in Table 1 of Hunt and Villegas [10]. Here �̃�x,t denotes the transformed lin-
ear predictor and Ax = logmx,t1

 , the initial log-mortality rates (or ‘constant’ of inte-
gration). Alternatively, Eq. (2) can be rearranged to read as

(2)logmx,t = �̃�x,t = Ax − 𝛼x
(
t − t1

)
−

t

∫
t1

𝜄u−xdu −

t

∫
t1

𝜅udu

(3)logmx,t = �̃�x,t = Ax − 𝛼x
(
t − t1

)
−

t∑

u=t1

𝜄u−x −

t∑

u=t1

𝜅u

(4)logmx,t = �x,t = �x + �x
(
t − t

)
+ �t−x + �t

Fig. 1  UK males 2004–2016, ages 0–102. 5-year empirical MIR rolling-averages, centred on 
2014(− 1)06, with smooth–spline curves. MIR percentage scale; R smooth–spline parameter setting = 0.8
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subject to the following transformation and redefinition of symbols

where I and K denote the respective integrands of � and �.
Noting the close relationship between all three structures, MIR may be modelled 

directly using either of the Sect. 2 statistics as Normal responses [6], here in combina-
tion with structure (1), or indirectly using either (3) [10] or (4) (e.g. Richards et al. [17]; 
CMI [3]) in combination with Poisson responses m̂x,t = dxt

/
ext and a log-link function.

We note that, subsequent to model fitting, (with the possible exception of the lat-
est UK Continuous Mortality Investigation model), the fixed effects parameter �t (and 
sometimes �t−x ) are treated as random variables to facilitate model extrapolation. Hence 
we investigate the effect of reformulating the modelling assumptions underpinning (1), 
(3) and (4) by including the random effects from the outset. To do so, we follow the 
approach of Lee et al. [12] which is based on hierarchical generalised linear models 
(HGLMs).

4  Normal linear mixed modelling and MIR

We start by modelling the linear predictor structure (1) treating both �t and �t−x as 
random effects and using Statistic I of Sect. 2 as responses. In formulating the model 
matrices which follow, the Lexis plane is scanned along the age axis for each increasing 
time period in sequence and we attach the suffix i = (x, t) (subject to exchangeability as 
appropriate), when the need arises to refer to the individual components.

Consider the multivariate normal mixed model

subject to independence with Σ =  �2
e
 I, Λ =  �2

v
 I; �=

(
�2
e
, �2

v

)
= (�, �) and focus on 

the associated augmented linear model(
y

�M

)
=

(
X Z

O I

)(
�

v

)
 , abbreviated to ya = T� , with quasi random effects 

responses �M =E(�) = 0 and augmented variance–covariance matrix

and the suffix i is introduced to indicate optional fixed effects variable dispersion.
Specifically, the matrices are designated as follows:
X, N × p fixed effects design matrix. �, p × 1 fixed effects parameters �x . Z, 

N × q random effects design matrix. v, q × 1 matrix of random effects comprising �t 
and �t−x . T, (N + q) × (p + q) augmented design matrix. � , (p + q) × 1 augmented 
matrix of fixed parameters and random effects. ya , (N + q) × 1 matrix of augmented 
responses comprising either one of the MIR statistics and quasi random effects 

�x → Ax − �x
(
t − t1

)
+ It1−x + Kt1

�x → −�x; �t−x → −It−x; �t → −Kt

y = X� + Zv + e;e ∼ MVN(O,Σ), v ∼ MVN(O,Λ)

Σa =

(
Σ O

O Λ

)
,Σ = diag

(
�i

)
,Λ = diag(�)
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responses �M = E(v ). Σa , (N + q) augmented diagonal matrix of scale parameters. 
I and O, respective identity and zero matrices of appropriate size where in terms of 
n1 = xk − x1 + 1, n2 = tn − t1 + 1.

The three constraints �min(t) = �min(s) = �min(s) + 1 = 0 are applied, which are suffi-
cient in number to ensure that the matrix T has full rank.

The model is fitted using the iterative weighted least squares (IWLS) procedure out-
lined in “Appendix I”. Three sets of (Studentised) residuals

are generated where

subject to the respective constraints

We recall that the modelling assumptions imply that the mean values of all three sets 
of residuals are also zero.

4.1  An application

We make use of the UK male mortality data set, period 1960–2016, ages 0–102. We 
remark that the setting of the upper age limit (102) avoids any empty data cells for 
very little loss of other data above the age of 102. Alternatively, the introduction of 
0/1 prior weights can beused to marginally extend the upper age limit.

Details of the fitted mixed effects model structure (1), with variable dispersion, 
are presented in Fig. 2, followed by some associated residual plots in Figs. 3, 4, 5. 
Thus the upper two panels in Fig. 2 depict the respective first and second moment 
fixed effects parameter estimates �̂�x and �̂�x , while the lower two panels depict the 
respective random effects components 𝜄t−x and �̂�t.

Figure 3, the upper pair of panels in Fig. 4, together with the left hand column 
of panels in Fig. 5 refer to the first or primary set of residuals (5); with the cen-
tre and right hand columns of panels (Fig. 5) referring to the respective sets of 
cohort (centre) and period random effects residuals. For these sets of residual we 
find that

N = n1(n2 − 1), p = n1, q = n1 + 2
(
n2 − 2

)
.

(5)
êi√

�̂�i

(
1 − hi

) ,
𝜄i√

�̂�2
(
1 − hMi

) and
�̂�i√

�̂�1
(
1 − hMi

)

êi = yi − �̂�i, 𝜇i = E
(
yi|v

)
= Xi𝛽 + Ziv

∑

i

êi = 0,
∑

s

𝜄s = 0 and
∑

t

�̂�t = 0.
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We note the following features from the figures: the constant nature of the bands 
of residuals in Fig. 3, consistent with the successful capture of dispersion effects; the 
generally satisfactory distribution of positive and negative residuals across the Lexis 
plane, with no noteworthy gaps (Fig. 4, upper two panels); and the marginal nature 
of the centre column of Normal and half-Normal plots (Fig. 5) associated with the 
cohort random effects. Taken as a whole, the residual plots are indicative that the 
modelling assumptions have been largely met.

We turn next to the replacement of the empirical MIR displayed in Fig. 1 with 
the corresponding fitted MIR. These are reproduced in the panels of Fig.  6, with 

∑

i

ê
i
= − 0.18, ê = − 0.00003,

∑

s

𝜄
s
= − 0.3, 𝜄 = − 0.002,

∑

t

�̂�
t
= − 0.007, �̂� = − 0.0001.

Fig. 2  UK males 1960–2016, ages 0–102, normal—normal mixed modelling, cohort and period random 
effects, structure (1), variable age dispersion. Upper panels: fixed age effect. Lower panels: component 
random effects
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the exception of the lower right panel for 2006. In addition, we have used the same 
parameter setting to generate the matching smooth-spline curves, which are dupli-
cated together with that generated for 2006 in the lower right panel. We note the 
sharpening focus of the patterns in each panel as a consequence. We note also the 
consistent shape of the resulting spline-smoother curves, which are characterised by 
two local extremes, subject to a slight drift in their positioning on the age axis. The 
two lower somewhat detached spline curves (in the lower right panel) are the product 
of the two most recent years, reflecting the recent decline in mortality improvement 
rates (a particular phenomenon which is analysed further by [5]. Almost without 
exception, for all panels, the readings (in terms of improvement rates) are positive.

Fig. 3  UK males, 1960–2016, ages 0−102. Normal—normal mixed modelling, cohort and period ran-
dom effects, structure (1), variable age dispersion. Model residuals plotted respectively against age, 
period and cohort-year
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5  Poisson‑Normal generalised linear mixed modelling and MR

In this section, we model the log-link linear predictor structure (4), with cohort and 
period random effects, using a combination of Poisson empirical mortality rates 
yi = m̂i and quasi random effects �M =E(�) = 0 to act as responses (dependent vari-
able). Thus we:-

Define an augmented GLM with responses yt
a
=
(
yt,� t

M

)t such that

with potentially structured dispersion or scale parameters �= (�, �) , respective Pois-
son and Normal variance functions V(�i) = �i, VM

(
�Mi

)
= 1 , with log and identity 

link functions and augmented linear predictor

The matrix/vector symbols are all as defined in Sect. 4, subject to changes in the 
details. Thus in the case of (4) with the two random effects components

E(y|v) = � E(�M) = v

var(y|v) = �V(�) var(�M) = �VM(�M)

�a =

(
�

�M

)
=

(
log�

v

)
=

(
X Z

O I

)(
�

v

)
= T�.

Fig. 4  UK males 1960–2016, ages 0–102. Positive/negative residuals in adjacent Lexis planes. Upper 
panels: Normal—Normal mixed model (1). Lower panels: Poisson—Normal mixed model (4). Both 
models with cohort and period random effects, and variable age dispersion
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 while no constraints are necessary to ensure the full rank of the matrix T.
Model fitting requires an adjusted dependent variable za =

(
zt, zt

M

)t whose values

reflect the respected log and identity link functions, and a variance covariance 
matrix

which reflects the choice of respective variance functions: the suffix applied to � 
being indicative of fixed effects variable dispersion. Fitting then follows the IWLS 
procedure as laid out in “Appendix I” subject to the following changes:

N = n1n2, p = 2n1, q = n1 + 2n2 − 1,

(6)zi = �i +

(
yi − �i

)

�i

, zMi = �Mi = 0

Σa =

(
Σ O

O Λ

)
, Σ = diag

(
�i

�iei

)
, Λ = diag(�)

Fig. 5  UK males 1960–2016, ages 0–102. Normal—normal mixed modelling, cohort and period ran-
dom effects, structure (1), variable age dispersion. Left panels: model residuals. Centre panels: matching 
cohort effects resiuals. Right panels: matching period effects residuals
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1. Given �= (�, �)

update �̂� by computing Σ−1
a

 , za and solving TtΣ−1
a
T �̂� = TtΣ−1

a
za.

2. Replace di when up-dating the fixed effects dispersion parameter � with either 
the squared deviance or squared Pearson residuals

while the empirical mortality rates provide the starting values for � . Details of 
the residuals are as described in Sect. 4.

5.1  An application

We make use of the same UK male mortality data set for the period 1960–2016, 
ages 0–102, as above. Key details of the mixed effects structure (4) with vari-
able dispersion by age are presented in Fig. 7: with the first moment fixed effects 

di = 2

(
yi log

(
yi

�i

)
−
(
yi − �i

))
, di =

(
yi − �i

)2

�i

.

Fig. 6  UK males 1960–2016, ages 0–102. Normal–Normal mixed modelling, cohort and period random 
effects, structure (1), variable dispersion. 5-year fitted MIR rolling—averages, centred on 2014(− 1)07, 
smoothed—spline curves. Lower right panel: comparison of resulting spline curves (including 2006)
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parameter estimates �̂�x and 𝛽x displayed in the two upper panels and the two ran-
dom effects 𝜄t−x and �̂�t in the two centre panels. We note that �̂�x takes the familiar 
shape of a static life-table’ including an ‘accident hump’. We also note that the 
second moment fixed effects parameter �̂�x , which is not displayed, is not too dis-
similar in shape from its counterpart depicted in Fig. 2. In anticipation of the sub-
sequent application of a first order autoregressive integrated ARI(1,1) time series, 
we depict the matching first differences of the two random effects components in 
the lower two panels.

Certain residual plots are presented in the two lower panels of Figs. 4 and 8, 
with the former indicating a lack of randomness in the spatial distribution of pos-
itive and negative residuals across the Lexis plane. The pattern of residuals when 
plotted against age, period and cohort year, result in similar patterns to the ones 
displayed in Fig. 3 and have not, as a consequence, been reproduced.

The model is extrapolated period-wise by applying an ARI(1,1) time series to 
the two random effects components as depicted in Fig. 9, together with forecasts 
and including matching residual plots in the alternative panels. Note that these 
time series plots replicate the respective details of the two centre panels in Fig. 7, 

Fig. 7  UK males 1960–2016, ages 0–102. Poisson−Normal mixed model (4). Upper panels: fixed age 
effects parameters. Centre panels: random effects components. Lower panels: respective random effects 
first differences
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while recalling the roles played by the two lower panels in Fig. 7 in generating 
the ARI(1,1) forecasts.

On the basis of 1000 time series forecast simulations, we have computed the period-
based life expectancies at each simulation, for certain ages, and depict the resulting 
0.05, 0.5, 0.95 quantiles in Fig. 10. We have focused on period-based computations 
as opposed to cohort-based computations since period-based forecasts may be read-
ily calibrated against historical trends based on the raw mortality data stretching back 
to 1922, which are also featured in Fig. 10. It would appear that the median forecast 
trends represent an over statement when compared with the most recent trend over the 
past decade or so, where mortality improvement rates have decelerated (see Fig. 1). 
Attempts to influence this feature by shortening the modelling period, in order to focus 
on the more recent mortality trend data, have not proved to be successful.

Fig. 8  UK males 1960–2016, ages 0–102. Poisson−Normal mixed modelling, cohort and period ran-
dom effects, structure (4), variable age dispersion. Left panels: model residuals. Centre panels: matching 
cohort effects resiuals. Right panels: matching period effects residuals
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6  Incorporating an AR(1) times series into the MIR and MR fitting 
process

When the model structures of Sect. 3 are formulated with only the main period 
component designated as a random effect, the possibility of simultaneously fitting 
a single parameter AR(1) period component time series arises. This involves the 
necessary adjustments to the two design matrices X and Z and composition of the 
fixed and random effects matrices � and v coupled with the introduction of a lin-
ear transformation of the random effects component

where
�(�) is a q × q matrix, with parameter � , and has rank(�(�)) = q.
Specifically for the AR(1) process, under the reverse transformation

� = �(�)�, with � ∼ MVN(�,Λ),� = diag(�),

Fig. 9  UK males 1960–2016, ages 0–102. MR model (4): cohort and period ARI(1,1) time series
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where K has non-zero elements kt+1,t = � , so that component wise.
rt = vt − �vt−1, t = tmin, tmin+1,… , tn.,.
Comprehensive model fitting then follows by embedding the IWLS fitting pro-

cess (“Appendix I”) between the following two steps:

1. Given � and hence �(�) estimate (�, �,�, �) for the model
  � = g(�) =�� + Z∗r where �∗ = ZL(�).
  and g is the appropriate identity or log link function.
2. Given  (�, �,�, �) estimate � by maximising the adjusted profile likelihood.

Here, with � ∼ MVN(�,Λ),� = diag(�) and � = L(�)� we maximise the profile 
likelihood of � ∼�VN

(
�, L(�)�L(�)�

)
 , adjusted to � ∼�VN(�,Λ) , as originally 

defined: with the parameter � entering the expression for the adjusted profile likeli-
hood via the response term v which comprises the linear transformation of r , involv-
ing �.

� = L−1(�)� = (I − K)v

Fig. 10  UK males 1922–2016, ages 0–102. Annual period—wise life expectancies, specific ages. Empir-
ical values with simulated 5%, 50%, 95% quantile forecasts generated using MR model (4)
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We subsequently refer to the above comprehensive self-contained fitting and 
extrapolation process as Approach A. Alternatively, by setting L(�) = I , we can 
retain the IWLS fitting process unchanged and separately fit the single parameter 
AR(1) time series, subsequently referred to as Approach B.

For (1)

with the two constraints �min = �min = 0 applied, and for (3)

with the three constraints �t1−xk = �tn−x1 = �t1 = 0 applied.
We note that in the case of (3) care is needed in the construction of matrix X to 

ensure that the main effects cohort parameters do not automatically take precedence 
over other fixed effects parameters (which appears to be the case if the R-library 
lme4 file is accessed and used in its construction).

6.1  An application

In addition to the direct modelling of MIR by the above process using model (1), we 
compare results obtained by the indirect modelling of MIR using model (3), which 
has also been formulated with a single period random effect. We again make use of 
the UKmale mortality data set, this time with slightly reduced period (1961–2009) 
and age (1–89) ranges in order to facilitate comparison with certain aspects of the 
previously reported investigations in Haberman and Renshaw [6]. When fitting (1), 
we choose the MIR Statistic I of Sect. 2, while noting that the choice does not have a 
material effect on the ensuing results. When fitting (3), we include the term Ax in the 
design matrix as a fixed effect to be estimated, as opposed to giving it the status of a 
predetermined offset. For both models, we allow for the capture of structured disper-
sion by fixed age effects.

The fitted results obtained using (1) are depicted in Fig. 11, together with one of 
the resulting residual plots in Fig. 12: the patterns in the remaining residual plots 
being similar to their counterparts in Fig. 3 and the two upper panels in Fig. 4. Mod-
elling is conducted using Approach A throughout this section, but we have addition-
ally superimposed, in Fig.  11, the equivalent plots obtained using Approach B to 
modelling (broken lines). We note the consistency of patterns within each panel as is 
the case when comparing the residual plots (not reproduced here but available from 
the authors).

Similarly, the fitted results obtained using (3), are presented in Fig. 13 together 
with one of the resulting residual plots in Fig.  14: the patterns in the remaining 
residual plots being similar to their counterparts in Fig. 3 and the two lower panels 
in Fig. 4. We note that the estimated fixed effects term Ax depicted in the upper left 
panel of Fig. 13 takes on the familiar shape of a static life-table (including an ‘acci-
dent hump’), and we have plotted the differences between this estimated age profile 
and the matching initial empirical log mortality rate profile in the lower left panel of 

N = n1(n2 − 1), p = n1, q = n1 + 2
(
n2 − 2

)

N = n1n2, p = n2 + 3
(
n1 − 1

)
, q = n2 − 1
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Fig. 13 for comparison purposes. We note the pattern of narrowing differences with 
increasing age. Again, we have superimposed the equivalent plots obtained using 
Approach B to modelling (broken lines) in all but the lower left panel of Fig.  13 
where two superimposed different point plotting symbols are displayed. The mutu-
ally compensating displaced patterns in the fixed effects parameter �x and �t−x plots 
(upper right, centre left panels) are noteworthy while consistency is preserved in the 
remaining four panels. Of particular interest is the horizontal trend (around zero) in 
the respective random effects period component (lower left panel Fig. 11 and centre 
right panel Fig. 13), which is indicative of the choice of a single parameter AR(1) 
process. We believe that this is possibly a general feature which is a consequence of 
the mixed effects model design.

Since the patterns in the matching residual plots are essentially identical under 
both Approaches A and B to modelling, they have not been replicated. The support-
ing comparison of residual plots is largely as illustrated in Fig. 7a–d of Haberman 
and Renshaw [6].

Fig. 11  UK males 1960–2009, ages 1–89. Normal—Normal mixed modelling, period random effects, 
structure (1), variable dispersion by age. Superimposed Approach A and B (broken-line) results in each 
panel
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6.2  Conversion of model outputs into model rates or improvement rates

The basic operation used to determine mortality rates from model (1) is that of defi-
nite integration, while that used to determine improvement rates from model (3) is 
that of differentiation. We have conducted each of these operation (in discrete time) 
to construct Figs. 15 and 16 by superimposing the respective fitted statistic (broken 
lines) on the corresponding empirical statistic (continuous line). Thus in Fig. 15, we 
have used the fitted values ŷx,t from model (1) (based on Statistic I of Sect.  2) to 
compute and depicted the ‘fitted’ log mortality rates

for ages x = 40(05)75. Two cases are displayed using (1) Âx from model (3) (broken-
lines), and (2) log m̂x,t1

 the initial empirical log rates (dotted lines) to provide the 
starter log rates logmx,t1

 . In Fig. 16, we have performed the reciprocal conversion 

log m̃x,t = logmx,t1
+

t∑

u=t1+1

log

(
2 − ŷx,u

2 + ŷx,u

)
, t1 ≤ t ≤ tn

Fig. 12  UK males 1960–2009, ages 1–89. Normal—Normal mixed modelling, period random effects, 
structure (1), variable age dispersion. Left panels: primary residuals. Right panels: matching period 
effects residuals
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process by using the parameter estimates from models (3) to generate the broken-
lines depicting ‘fitted’ improvements in Fig. 16. This issue is discussed further in 
Sect. 7.

6.3  Model extrapolation

Once the models have been fitted to the data, the method by which mortality 
improvement rates are extrapolated and converted to rates, using the fixed effects 
parameter estimates �̂�x and 𝜄t−x , and random effects time series �̂�t = v̂t , is identical 
for the two models (1) and (3): only the method of estimating these effects differs.

In the application which follows, when converting from extrapolated improve-
ments to rates, we adopt the procedure described in Sect. 2.6 of Haberman and Ren-
shaw [6]. For extrapolation to ages outside the dataset (referred to as “topping- out” 
by age in the literature), we follow the period based version of the procedure using 
a fitted hyperbolic function which is described in Sect. 2.7 of Haberman and Ren-
shaw [7]. In order to facilitate comparison with the earlier results of Haberman and 

Fig. 13  UK males 1960–2009, ages 1–89. Poisson−Normal mixed modelling, period random effects, 
structure (3), variable dispersion by age. Superimposed Approach A and B (broken-line) details in five 
panels. Lower left panel: superimposed initial/estimated log(rate) differences by age
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Renshaw [6], in this application, we have truncated the lower end of the age range to 
ages 20–89, prior to modelling,

Given the horizontal trend in the random effects period components, coupled 
with the design feature E

(
vi
)
= 0 , we extrapolate the models by applying the 

single parameter AR(1) time series to �̂�t . By this method, we have constructed 
Fig.  17 which depicts extrapolated life expectancy 5%, 50%, 95% quantiles, 
computed on a cohort basis, and plotted as the individual horizontal lines, each 
based on 1000 simulations. First, in the two upper panels we show the respective 
model evolving biennial tn = 1995(02)2009 extrapolations (subject to front-end 
data deletions shown in descending sequence), thereby using data for 1961–1995, 
1961–1997,…, 1961–2009. Second, in the two lower panels, we show the respec-
tive model static tn = 2009 extrapolations having first subjected the data to sys-
tematic biennial rear-end truncations 1961(02)1975, thereby using data for the 
periods 1961–2009, 1963–2009,…, 1975–2009 (shown in ascending sequence).

We note the similarity of the extrapolations on comparing the different mod-
els, together with the material narrowing of the intervals in comparison with the 

Fig. 14  UK males 1960–2009, ages 1–89. Poisson—Normal mixed modelling, period random effects, 
structure (3), variable age dispersion. Left panels: primary residuals. Right panels: matching period 
effects residuals
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intervals reported in Haberman and Renshaw [6], using a variety of fixed effects 
model structures.

As further evidence of the horizontal trend about zero in the random effects 
period component, we have compared the effects of including an additional inter-
cept parameter in the AR(1) time series using Approach B. The results are pre-
sented in Table  1, in which we have tabulated the AR(1) parameter estimates, 
standard errors and p-values, both with and without the intercept parameter 
included: and note the lack of statistical significance of the intercept parameter 
throughout.

We now revert to the full 1–89 age range, and an illustration of the 40(05)75 age spe-
cific empirical log mortality rates with simulated 5%, 50%, 95% quantile projections using 
model (1) and Approach A of Sect. 6 is presented in Fig. 18. These projections, based on 
2000 simulations, have been generated by sampling the error in the period component time 
series. As has been widely discussed in the literature (see Lee and Carter [11], for example), 
this approach is an approximate one and does not take into account the smaller contribution 
from the uncertainty in the fixed effects parameter estimates. We have adopted this approach 

Fig. 15  UK males 1960–2009, ages 1–89. Integration: comparison of empirical log(rates) (continuous-
line) and fitted log(rates) using model (1) improvements in combination with (i) A(x) from model (3) 
(broken—lines) and (ii) equivalent initial log(rates) (dotted-lines), for specific ages
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Table 1  UK male mortality experience, various periods as listed in the first column, matching the upper 
frame in Fig. 11, ages 20–89

Estimates, standard errors, and p-values for the AR(1) times series with an intercept parameter (second 
entry), columns 2–4, and without the intercept parameter, columns 5–7

Period Estimate Std. error p-value Estimate Std. error p-value

1961–2009 − 0.4454
0.000598

0.1283
0.00281

0.00114
0.833

− 0.4457 0.1296 0.00122

1961–2007 − 0.4502
0.000797

0.1308
0.00291

0.00127
0.786

− 0.4499 0.1319 0.00136

1961–2005 − 0.4493
0.000755

0.1337
0.00303

0.00166
0.805

− 0.4492 0.1347 0.00174

1961–2003 − 0.4483
0.000897

0.1370
0.00315

0.00220
0.777

− 0.4479 0.1383 0.00235

1961–2001 − 0.4523
0.000746

0.1403
0.00327

0.00260
0.821

− 0.4524 0.1411 0.00264

1961–1999 − 0.4606
0.000949

0.1431
0.00337

0.00273
0.780

− 0.4603 0.1442 0.00284

1961–1997 − 0.4623
0.000800

0.1474
0.00354

0.00351
0.823

− 0.4625 0.1480 0.0035

1961–1995 − 0.4740
0.00135

0.1535
0.00372

0.00416
0.720

− 0.4722 0.1546 0.00435

on grounds of simplicity, with the justification that the uncertainty in the fixed effects param-
eter estimates would only make a marginal difference to the prediction intervals.

7  Discussion

Concerning Figs.  1 and 6, the choice of n when forming the n-year MIR rolling- 
averages is, in part, somewhat arbitrary. However, as n increases, further investiga-
tions (not included here) show that the emerging age patterns in the MIR become 
sharper in focus and display greater consistency. In addition, the patterns of tightly 
packed MIR age profiles (lower right panel Fig. 6) are found to extend backwards 
in time over the best part of the last half century before breaking up. This feature 
is broadly supported by the equivalent details of Fig. 1 which extends backwards in 
time much further.

The same mathematical formula connecting the two alternative MIR statistics 
of Sect. 2 continues to apply when the statistics are redefined from the cohort, as 
opposed to period perspective, to read as follows:

Statistic I: ỹxt =
−Δsmx,t

(mx−1,t−1+mx,t)∕2
= 2

(1−mx,t∕mx−1,t−1)
(1+mx,t∕mx−1,t−1)

 , and
Statistics II: z̃xt = Δs logmx,t = logmx,t − logmx−1,t−1.
See Haberman and Renshaw [7] for application of the former approach.
While noting that Schinzinger et  al. [18] use a different predictor structure, 

which is multiplicative bilinear as opposed to our additive linear structure, both 
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approaches assume Normal MIR random variables. Of particular relevance, we 
refer to the Centre Right panel of their Fig. 6.1 in which the annual age-aggre-
gated empirical MIR, based on ages 21–100, for periods 1971–2011 are depicted 
for UK males (and females).

Using our slightly shorter version of the data, and the MIR Statistic II in com-
mon with Schinzinger et al. [18], the same results (males only), for the overlap-
ping periods 1971–2009, are reproduced in the Upper Left panel of Fig.  19. In 
addition, a scatter-plot of the time-adjacent age-aggregated MIR is depicted in the 
Upper Right panel, to illustrate the degree and nature of the correlation between 
these two measures, as discussed in Sect.  6.1 of Schinzinger et  al. [18]. The 
equivalent results using the MIR Statistic I are depicted in the two Lower pan-
els of Fig. 19. The comparison of matching upper and lower left panels reveals 
that the one is the mirror image, in the x-axis, of the other, for reasons given in 

Fig. 16  UK males 1960–2009, ages 1–89. Differentiation: comparison of MIR empirical improvements 
(continuous line) and fitted improvements based on model (3) parameter estimates (broken-lines), for 
specific ages
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Sect. 2; while the upwards trend in the pattern in the lower left panel accurately 
portrays the improvement.

Denuit and Trufin [4] provide a further interesting example of a HGLM with ran-
dom effects period component, without classifying it as such. Thus, as a means of 
projecting a regulatory life table, an exponential decline model

subject to stipulated constraints is formulated, in which the mortality rates mx,t 
are subjected to a sequence of annual random shocks Λt . Thus

with log-link, so that

mx,t = mx,t−1�xΛt, �x = �x�

m̂x,t|Λt ∼ Poi
(
mx,t

)

logmx,t = logmx,t−1 + log � + log �x + logΛt

Fig. 17  UK males 1960–2009, ages 20–89. Exprapolated life expecancy 5%, 50%, 95% quartiles (1000 
simulations). Upper panels: evolving 1995(02)09 dynamic extrapolations (decending sequence). Lower 
panels: static 2009 extrapolations subject to front end 1960(02)72 data deletions (ascending sequence). 
Juxtaposed models (1) and (3)
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where the first term on the RHS is treated as an offset log m̂x,t−i , the next two fixed 
effects terms are estimated, and the final term vt = logΛt is modelled as a normal 
random effects variable (so that Λt has the log-normal distribution); with estimates 
subject to the stipulated constraints.

The philosophy underpinning this approach to generalised linear modelling with 
random effects and the associated likelihood theory, which we have followed and which 
is described in Lee et al. [12], is non-Bayesian.

In addition to providing the detailed methodology on which Sects. 4–6 are based, 
the methodology of Lee et al. 12  could be extended to the incorporation of smoothing, 
including smoothing by beta-splines.

We note that there is a long established practice of using the Poisson distribution to 
model numbers of deaths and hence central mortality rates. This starts historically with 
a static setting in the construction and graduation of life-tables and moves forward to a 
dynamic setting as here and in the extensive literature on longevity modelling. As dis-
cussed in Section 1 of Hunt and Villegas [10], there would appear to be no such estab-
lished practice for the direct modelling of central mortality improvement rates. Given 
our results and in particular the residual plots reported in the applications (and also by 

Fig. 18  UK males 1960–2009, ages 1–89. Age specific empirical log(rates) with simulated 5%, 50%, 
95% quantile projections, using model (1)
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Haberman and Renshaw [6]), we believe there is adequate evidence for the use of the 
Gaussian distribution to model mortality improvement rates.

In their Sect. 3.4 of Hunt and Villegas [10] have identified an important inherent 
difficulty with modelling improvements directly, expressed in terms of a “crude” or 
“fitted” estimation approach. We conjecture that this manifests itself, in the current 
modelling framework, as the choice between estimating Ax as part of the fixed effects 
structure in (3) or treating Âx = log m̂x,t1

 as an offset term.
Further, this issue appears to be bound up with the difficulty of reversing the dif-

ferentiation process which requires a suitable ‘constant’ of integration: a situation remi-
niscent of the problem of setting boundary values when integrating partial differential 
equations in mathematical physics. Setting aside model extrapolation, and given that 
the sequential differencing of rates is implied in the construction of improvements 
measures, the use of initial rates to reverse the process is a potential concern, and was 
the motivation behind the construction of Fig. 15 in Sect. 6.

When introducing a main effects cohort term into a dynamic parameterised predic-
tor structure for modelling mortality rates (Renshaw and Haberman [16]), we have nat-
urally assumed that the supporting Lexis plane was divided into unit squares, typically 

Fig. 19  UK males 1970–2009, ages 21–100. Upper left panel: MIR Type II Statistics aggregated over 
age for each calendar year. Upper right panel: associated scatter plot of the time adjacent aggregated MIR 
values. Lower panels: equivalent depictions using Type I Statistics
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of size 1 year. We have had the benefit of a data set with sufficient granularity to match 
this level of detail. In so doing, we have avoided some of the problems that were expe-
rienced by Mitchell et  al. [14] who have needed to use grouped data and irregular 
grouped data in some cases: this has led to difficulties in modelling the parameterised 
cohort components.

We note that the “topping-out” procedure does have a material effect on the values 
of the projected life expectancies depicted in Fig. 17. We note also that the choice of 
fixed effects parameter constraints made for the three mixed effects models is not nec-
essarily unique but is sufficient to ensure that the matrix T has full rank.

8  Concluding comments

The comparison of MIR Statistics (Sect. 2) indicates the greater accuracy of Sta-
tistic I. However, we have found that the replacement of Statistic I by Statistic II 
(subject to reversal of sign) does not induce any material consequential differ-
ences in our reported results.

By attributing random effects to the period and cohort components or just the 
period components of a main effects age-period-cohort structured linear predic-
tor from the outset, we have described a comprehensive self-contained process 
for modelling and forecasting mortality improvement rates, which incorporates 
structured dispersion and an apparent self-selecting time series. This process is 
made possible through the implementation of HGLMs with random effects. The 
methodology also extends to the modelling and forecasting of mortality rates pro-
vided that the predictor structure is linear, and, as such, excludes alternatives that 
involve bilinear decomposition. We argue that this methodological framework 
leads to a more unified approach to model fitting and forecasting.

For the linear predictor structures under consideration, the choice of the asso-
ciated time series models, AR(1) for MIR mixed effects modelling and ARI(1,1) 
for MR mixed effects modelling, follows as a direct consequence of the initial 
modelling assumptions. The application of these time series models in this con-
text, which are shown to be well supported by the data, may be further general-
ised by increasing the number of autoregressive terms when this is justified by 
the practical application.

We note the usefulness of examining the patterns of the random effects residu-
als as these provide additional critical insight into whether the modelling assump-
tions are being adhered to.

We note also the usefulness of comparing the empirical and modelled age spe-
cific mortality improvement rates. For example, we note that the MIR age pro-
file modelled patterns of Sect. 4 (Fig. 6) are broadly similar to the corresponding 
empirically generated MIR age profiles of Fig. 1.

There is a long established practice of using the Poisson distribution to model 
numbers of deaths and hence central mortality rates. Given our detailed model-
ling results, we believe there is adequate empirical evidence for the use of the 
Gaussian distribution to model mortality improvement rates.
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A word of caution is needed in the use of the Sect. 5 methodology for the long 
term forecasting of mortality rates and life expectancies in so far as it may not be 
sufficiently flexible to reflect recently emerging trends in the underlying mortality 
rates and corresponding life expectancies for certain countries (see, for example, 
Case and Deaton [2] and Djeundje et al. [5]).

Appendix I

Iterative weighted least squares (IWLS) model fitting procedure:

1. Given �= (�, �)

  update �̂ by computing �−1
a

 and solving �t�−1
a
��̂� = �t�−1

a
ya.

  compute leverages 
(
hi, hMi

)
 , diagonal elements of matrix �

(
�t�−1

a
T
)−1

�t�−�
�

.
2. Given �

update the components of 𝜏 sequentially using the Gamma GLMs-

GLM characteristic Fixed effects � Random effects �

Response d∗
i

d∗
Mi

Mean E
(
d∗
i

)
= � E

(
d∗
Mi

)
= �

Variance var
(
d∗
i

)
= 2�2 var

(
d∗
Mi

)
= 2�2

Link � = g(�) �M = gM(�)

Linear predictor � �M

Deviance component gamma
(
d∗
i
,�

)
gamma

(
d∗
Mi
, �
)

Prior weights
(
1 − hi

)/
2

(
1 − hMi

)/
2

where the respective responses

the deviance components

and i = (x, t) identifies matching data cells and matrix components.
Starting values of the order 0.01 are allocated to the components of �= (�, �) , while 

termination of the iterative process is controlled by the convergence of the three GLM 
deviances (and or convergence of the absolute difference in the sequential maximum 
scale parameter: thus max

i

|||𝜏i,j − 𝜏i,j−1
||| < tolerance for iterations j = 1, 2, 3, ... and pre-

set tolerance). Both the canonical reciprocal link and log link have been found to work 

d∗
i
=

di

1 − hi
, di =

(
yi − Xi𝛽 − Ziv̂

)2
; d∗

Mi
=

dMi

1 − hMi

, dMi = v̂2
i

gamma(d∗
i
,�) = 2

{
− log

(
d∗
i

/
�
)
+
(
d∗
i
− �

)/
�
}



410 A. Renshaw, S. Haberman 

1 3

equally well. For uniform dispersion, the linear predictors � and �M are set to be con-
stants, while variable fixed effects dispersion by age, is possible by setting the linear 
predictors and starting values accordingly. When this is the case, �i replaces �.

Appendix II

(Outline details of the R-program used in this paper).
The key sections are as follows

1. The settings comprise (1) scalars controlling the geometry of the data array, the 
extent of period-wise extrapolation, the number of simulations, the choice of MIR 
statistic and model type, (2) vectors controlling the choice of ages and quantiles 
when extrapolating.

2. The collection of own functions includes functions for returning (1) MIR statis-
tics, (2) age-specific period-wise life expectancies, (3) ARI(p,d) time series with 
forecasts and error forecasts.

3. The set up involves (1) data scanning and (2) vector creation of different lengths 
and types, indexing the annual data cells by age, period and cohort

4. The model fit first requires the construction of matrices O, I, X, Z, T,ya . The 
R-command library(lme4) aids this. For Poisson-Normal mixed modelling an 
additional N by 1 matrix mu, using empirical mortality rates for starter values, is 
required to form the adjusted dependent variable, expression (6) The matrices Σa 
and � , together with a diagonal matrix of leverages evolve as part of the iterative 
fitting procedure (“Appendix I”). Details of the age/period/cohort component 
effects and residuals are extracted for display.

5. The graphics comprise (1) residual and (2) component fixed/random effects plots.
6. In addition to returning forecasts with root mean square errors, a graphical facility 

has been included in the ARI own function.
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7. For pre-selected ages and future periods, the simulation process results in matrices 
of simulated (1) log mortality rates and (2) period-wise life expectancies. For 
MIR modelling, an additional step is applied to convert from improvement rate 
projections to log mortality rate projections. The number of simulations equates 
with the number of columns in these matrices, which readily reduce in size on 
taking quantiles. Graphics are included.
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