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Abstract

This paper assesses the risk of a mass lapse event in life

insurance. The rarity of the event and the complexity of

policyholder behavior make the risk assessment of

such a scenario difficult. Using a simulation study, we

evaluate how different estimation methods can assess

the risk of this scenario, using panel data at the com-

pany level. We then use the best‐performing method to

estimate the probability distribution function of a mass

cancellation event in the United States and Germany.

We identify dependencies of the event on company and

country characteristics, which have not been taken into

account by regulating agencies. We also find that the

current mass lapse scenario in Solvency II has no

empirical foundation for the German market. We show

that an empirically valid scenario leads to a sig-

nificantly lower solvency capital requirement for the

average German life insurer.
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1 | INTRODUCTION

Rare events with extreme consequences often have a profound influence on economies and
their economic agents. The 9/11 terrorist attacks led to considerable changes in many economic
sectors, such as the airline industry. Hurricanes, such as Katrina and Sandy, have shaped how
we see flood protection and insurance. Financial crises, such as the Great Depression and that
of 2009, influence our considerations of financial regulation and economic risks, in general. For
organizations, extreme events can similarly shape existence. One such extreme event for life
insurance companies is the occurrence of a mass cancellation event, that is, a large portion or
even a majority of the policyholders who cancel their life insurance policy abruptly. Even
though policyholder‐cancellation behavior has received considerable attention in the academic
literature (e.g., Eling & Kiesenbauer, 2013; Kuo et al., 2003), the question of how to model mass
cancellation scenarios has received scant attention. This is surprising because the possibility of
mass cancellations has a large effect on insurance companies' asset liability management and
leads to one of the largest financial reserves in the European risk management framework
Solvency II (EIOPA, 2011).

This omission in the literature can be explained, in part, by the data requirements associated
with estimating extreme cancellation events. Extreme cancellation, and its associated rates, is a rare
event; thus, data sourced from only one insurer are not sufficient to estimate this tail risk. In this
paper, we address this challenge by employing the estimation approach of Chavez‐Demoulin et al.
(2016), which is based on extreme value theory and can be applied to panel data. We consider
cancellation rates as realizations of random variables but do not make any assumptions about their
distribution functions, except that they are continuous.1 This method enables us to estimate the
unknown probability distribution functions and associated risk measures for extreme cancellation
events from readily available panel data at the company level.

Dependent on contract characteristics, cancellations can either negatively or positively af-
fect an insurer's profits. Unexpected changes in the level of cancellation rates can lead to
liquidity problems, the loss of expected future profits, and unbalanced initial expenses (Eling &
Kiesenbauer, 2013; Kuo et al., 2003). Life insurers are, thus, interested in assessing their
exposure to this risk as accurately as possible. U.S. life insurers can potentially face very high
cancellation rates, particularly after premium guarantee periods expire (SOA & LIMRA, 2018,
p. 29). The possibility of such an extreme event needs to be taken into consideration for a
company's asset liability management. In other situations, however, cancellations can increase
an insurer's profits, as policies are usually front‐loaded, and a cancellation allows insurers to
reap the early profits without having to incur expected losses in the later part of the policy's life
cycle (Gottlieb & Smetters, 2020). In each case, understanding cancellation behavior is crucial
for life insurers to ensure adequate asset liability management.

For the European market, the importance of understanding the cancellation behavior of
policyholders has become critical with the introduction of the new regulatory framework
Solvency II. The framework's solvency capital requirement (SCR) has a great sensitivity to lapse
risk (EIOPA, 2011, p. 67). In the standard model of the regulation framework, the mass lapse

1
The continuity assumption enables us to obtain results on the far end tail of the cancellation rates' distribution functions under technically mild assumptions.

The literature shows that the conditions for the existence of a limit distribution for discrete distribution functions are strong (Davison & Huser, 2015;

Hitz et al., 2017; Nadarajah & Mitov, 2002). Our continuity assumption allows us to consider a more flexible framework. The following reasons justify our

continuity assumption: (1) We observe no evidence for a discontinuous distribution function in the histograms of cancellation rates stemming from two

different countries (United States and Germany) between 1996 and 2018 (see Figures 1 and 4). (2) The commonly assumed sources (e.g., unemployment rate or

interest rate) of cancellation rates are modeled as continuous random variables.
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shock leads companies to have solvency capital requirements in the hundreds of millions
(Old Mutual, 2016; UNIQA, 2017) because insurers have to apply a scenario in which 40% of all
policyholders cancel their contract in the same year. This assumption does not have an empirical
justification for the assumed size of the shock or account for the fact that the same shock is
assumed for all of the different national markets in Europe. Our model offers a way to use
empirical assumptions appropriate for the individual national insurance market in the lapse‐risk
module, which can help to limit the risk of possible over‐ or under‐reserving. Previous literature
on cancellation events, in general, has used two approaches—estimating cancellation rates from
data directly (e.g., Eling & Kiesenbauer, 2013; Fang & Kung, 2020; Knoller et al., 2016) or
calibrating economic models based on specific assumptions about macroeconomic factors and
policyholder behavior (Albizzati & Geman, 1994; Bacinello, 2003; Consiglio & De Giovanni,
2010). These approaches differ in their interpretation. Empirical approaches often make fewer
assumptions than do other approaches but seldom allow for a causal interpretation of the results.
Model‐based approaches identify causal relationships but assume specific relationships between
policyholder behavior and macroeconomic factors, which may not hold. For extreme cancellation
events, some theoretical modeling approaches exist (Barsotti et al., 2016; Loisel & Milhaud, 2011),
but, as of yet, no empirical estimations have been reported.

Applying the estimation method to data sourced from U.S. life insurers demonstrates the
applicability of our approach and shows the importance of the product type for high cancel-
lation rates in the U.S. market. Although mass cancellation scenarios with rates up to 50% can
be adequate for companies with a high share of term life policies, a mass cancellation scenario
for companies with a high share of permanent life insurance policies is estimated to be ap-
proximately 20%. Further, we consider the calibration of Solvency II's mass cancellation sce-
nario, using German data. Our results show that cancellation rates of 20%–25% reflect a mass
cancellation scenario in the German life insurance market. These values raise skepticism as to
whether the arbitrarily chosen cancellation rate of 40% for this scenario in Solvency II is
adequate for the German life insurance market. In both the U.S. and German markets, the
severity of the extreme cancellation event is decreasing in correspondence with the size of the
insurers' portfolio and increasing in proportion to the amount of new business. This encourages
further research on other company‐specific variables. The combination of these results and that
the mass cancellation scenario can depend on the predominant product type sold in a market
call into question whether a uniform mass cancellation scenario for all European life insurance
markets is appropriate. European life insurance markets differ in their company characteristics
(Insurance Europe, 2019) and in their dominant products (Standard & Poors, 2018) and might,
thus, differ in their mass cancellation scenario as well.

We view the contribution of our paper as complementary to, rather than competing with,
model‐based approaches. Although our approach does not rely on assumptions about policy-
holder behavior, we are able to estimate only a cancellation rate distribution but are unable to
identify the causal relationship that leads to the cancellation rate. Model‐based approaches can
use our results to validate their behavioral assumption by observing whether their models
produce similar cancellation rate distributions. Alternatively, our results can be used directly
for models of cancellation behavior.

In the following, we first summarize the empirical estimation method and provide a si-
mulation study to examine the approach in a panel data context. We then apply the estimation
procedure to U.S. and German data. The next section provides implications for the modeling of
extreme cancellation rates and for insurance regulation. The paper ends with concluding re-
marks and provides directions for future research.
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2 | METHODOLOGY

2.1 | Overview

Our approach is based on considering cancellation rates as a stochastic variable. The main
hypotheses that prevail in the literature to explain cancellation behavior are based on mac-
roeconomic variables, such as the interest or unemployment rate.2 As macroeconomic variables
can be seen as stochastic processes, and changes in macroeconomic variables lead to changes in
cancellation rates, cancellation rates also can be modeled stochastically. A major problem with
assessing the underlying distribution function, however, is posed by the lack of sufficient
extreme data. We thus employ the peaks‐over‐threshold (POT) method, which exploits the
existence of a natural candidate for the conditional distribution function above a high level.

In this section, we first summarize the POT method as it is described in Embrechts et al.
(1997) and McNeil et al. (2015). In its original form, the method can be applied only to
independent and identically distributed (i.i.d.) data. For our purposes, this would require a long
time series of cancellation rates for a single company. Such data, however, are not reliably
available. We are limited to using panel data of multiple companies over short periods of time.
These data feature a dependence structure along two dimensions. First, macroeconomic vari-
ables affect all companies at the same time so that it can be assumed that observed cancellation
rates within the same time period are correlated. Second, companies can have idiosyncratic
factors that lead to higher or lower cancellation rates, which will make the observations within
a company serially correlated over time. To address these issues, we summarize a dynamic
version of the POT method, which was introduced by Coles (2001) for parametric dependencies
and extended by Chavez‐Demoulin et al. (2016) to semiparametric and nonparametric de-
pendencies. The dynamic POT method takes into account the dependency structure of our
panel data by modeling the parameters of the estimated probability distribution dependent on
time and on a quantitative company‐level variable (in our case, the portfolio size). Finally, this
section provides a simulation study to evaluate the dynamic POT method in a panel data
context.

2.2 | Peaks over threshold method

We consider a panel of n insurance companies over T periods with cancellation rates yj s, ,
modeled as realizations of the random variables Y j n s T( = 1, 2, …, ; = 1, 2, …, )j s, . We first
make the strong assumption that all random variables Yj s, are i.i.d. with cumulative distribution
function F . The classic POT method then allows us to reliably estimate the risk of extreme
cancellation rates without knowing the common underlying distribution function F .

The intuition is to split the distribution function F into two parts based on a “suitably large”
threshold u > 0. Below the threshold, we are given enough data so that the empirical dis-
tribution provides a good fit. Above the threshold, the Pickands‐Balkema‐de Haan Theorem
(e.g., Balkema & de Haan, 1974; Pickands, 1975) enables us to approximate the excess dis-
tribution function of F over u by the generalized Pareto distribution (GPD) function.

2
This is mostly based on two concepts: the interest rate hypothesis and the emergency fund hypothesis. Evidence for the former can be found in Schott (1971),

Pesando (1974), and Kuo et al. (2003). Evidence for the latter is reported in Dar and Dodds (1989), Outreville (1990), and Kiesenbauer (2012).
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We define the excess distribution function Fu of Y1,1 (all Yj s, are i.i.d.) over a threshold
≔ ∈u u z z F z, 0 < < sup{ : ( ) < 1}F , by the conditional probability:

≔ ≤ ∣ ≤ ≤F z Y u z Y u
F z u F u

F u
z z u( ) ( − > ) =

( + ) − ( )

1 − ( )
, 0 − .u F1,1 1,1 (1)

Rearranging this equation and defining ≔F F¯ 1 − and ≔F F¯ 1 −u u, we obtain a method for
estimating the far end tail of F by estimating F u¯ ( ) and F z¯ ( )u :

⋅F z u F u F z¯ ( + ) = ¯ ( ) ¯ ( ).u (2)

We approximate F u¯ ( ) by the empirical distribution function ≔F u F u¯ ( ) 1 − ( )N N and approx-
imate F z¯ ( )u , using a GPD.3 This distribution function is dependent on a shape parameter ∈ξ
and a scale parameter β > 0 and is given by
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where ≥z 0 if ≥ξ 0 and ∈ ∕z β ξ[0, − ] if ξ < 0. Because the realizations yj s, are i.i.d., F̄u can be
approximated by   ≔G G¯ 1 −ξ β u ξ β u, ( ) , ( ) with estimates ξ and β u( ) of the threshold‐independent
shape parameter ξ and the threshold‐dependent scale parameter β u( ) (McNeil et al., 2015).

The estimates ξ and  β β u= ( ) can be computed by the method of maximum likelihood
applied to the set of data yj s, j with ∈s Sj j, where ⊆S T{1, 2, …, }j denotes the subset of points in
time at which the excesses over the threshold u for company j occur. In addition, a maximum
likelihood estimate of F u¯ ( )N is given by ∕N Nu , where Nu denotes the total number of excesses,
and ≔N nT designates the total number of cancellation rates. Given these estimates and a
threshold u, the estimated quantile q α( ) of the unknown distribution function F at confidence
level α is equal to:
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The choice of the threshold u is an important component of the POT method: If the
threshold is too low, the exceedances also include nonextreme events, and the estimates are
biased. In contrast, if the threshold is too high, the number of exceedances is low, and the
variance in the statistical estimation is large. To select a threshold, the goodness of fit of
empirical excesses over the chosen threshold u to a parametric GPD model can, for example, be
evaluated through a Q‐Q plot. In such a graph, the quantiles of the log‐transformed excesses
over u are plotted against the theoretical quantiles of an exponential distribution. If a straight
line is observed, then it is empirically confirmed that the GPD provides a good fit of the data.
The optimal threshold is chosen as the smallest u for which a good fit is observed.

For commonly available panel data, the assumptions of i.i.d. random variables are usually
violated. Thus, in our later applications, we employ a generalization of the POT method for

3
The empirical distribution function FN of F given N nT= i.i.d. observations of n companies over T periods is defined as:

≔ ∑ ∑ ≥≤F z z( ) , 0N
N j

n
s
T

yj s z
1

=1 =1 ( , ) .
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non‐i.i.d. data, which enables us to let the frequency and severity of the excesses be dependent
on covariates.

2.3 | Dynamic peaks over threshold method

Again, ξ and β are parameters of the GPD that model the size of the excesses over a large threshold.
The number of excesses is assumed to follow a nonhomogeneous Poisson process with rate
function λ. The dynamic POT method allows the frequency parameter λ and the severity
parameters ξ and β to be dependent on covariates, which avoids making the assumption that the
cancellation rates are realizations of i.i.d. random variables (Chavez‐Demoulin et al., 2016;
Coles, 2001). In our applications, we use two covariates: the first covariate x represents the insurer's
portfolio size, and the second covariate s represents time. The reparameterization
≔ν β ξlog( (1 + )) and general measurable functions  →≥g g g, , :ξ ν λ 0 and

→h h h T, , : [1, ]ξ ν λ leads to the following generalized additive models for the parameters of the
dynamic POT method:4

ξ ξ x s g x h s= ( , ) = ( ) + ( ),ξ ξ (5)

ν ν x s g x h s= ( , ) = ( ) + ( ),ν ν (6)

λ λ x s g x h s= ( , ) = ( ) + ( ).λ λ (7)

In the above equations, g g g, ,ξ ν λ and h h h, ,ξ ν λ are either linear or smooth functions. In their
combination they can model a parametric, semi‐parametric, or nonparametric dependence of the
parameters on the corresponding covariates. We utilize natural cubic splines for the smooth functions
and determine their degrees of freedom and, thus, their smoothness based on Akaike's information
criterion (AIC) value (see Section 3.1.3 and Chavez‐Demoulin et al. (2016, p. 746) for more details).

Pooling the Nu excesses yj s, j under the consideration of the corresponding portfolio size
covariate x x= j s, j and time covariate s s= j enables us to obtain estimates for ξ x s( , ) and ν x s( , )

by employing the penalized maximum likelihood estimation of Chavez‐Demoulin et al. (2016).
Moreover, we can directly estimate the rate ≔ ∕ρ x s λ x s N x s( , ) ( , ) ( , ) of the nonhomogeneous
Poisson process through a logistic regression model, where N x s( , ) stands for the total number
of observations for a fixed covariate x and time point s. Subsequently, the estimated α‐quantile
q α( ) for a threshold u in dependence of the covariates x and s is given by
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The applicability of the dynamic POT method has, for example, been shown by
Chavez‐Demoulin et al. (2016), Embrechts et al. (2018), Hambuckers, Groll, et al. (2018), and
Hambuckers, Kneib, et al. (2018). Each of these papers applies the dynamic POT method to
operational losses and uses covariates to control for the underlying heterogeneity across time and
companies. As background to applying the method to estimate extreme cancellation rates, in the next
section, we provide a simulation study to examine the dynamic POT method in a panel data context.

4
The reparameterization ≔ν β ξlog( (1 + )) guarantees the convergence of the simultaneous fitting procedure for the two parameters ξ and β

(Chavez‐Demoulin et al., 2016). This reparameterization requires ξ > −1, which is fulfilled in our applications.
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2.4 | Simulation study

2.4.1 | Overview

We assess the suitability of the introduced methodology for applications to panel data. We aim
to achieve two goals. First, we compare three different approaches with respect to their ac-
curacy: In Case (1), we perform the classic POT estimation; in (2), we apply the dynamic POT
to the companies' time series jointly, meaning that we take into account the panel structure of
the data; and in (3), we employ the dynamic POT estimation to each company's time series
separately. Second, we focus on threshold selection. Because we have heterogeneity in the
parameters across time and within companies, we would optimally choose time‐dependent and
company‐specific thresholds. Due to limited data availability, however, we are often restricted
to choosing one threshold based on all of the pooled cancellation rate observations. We
therefore examine the effect of such a simplification of the threshold selection on the esti-
mation's accuracy in the dynamic POT method by comparing two approaches: In Case (2.1), we
choose a joint empirical threshold based on pooling all data; and in (2.2), we choose an
individual threshold for each company separately.

2.4.2 | Approach

We consider n= 1000 insurance companies over T years (T = 20, 40, 80) and simulate can-
cellation rates for each company j n= 1, 2, …, at time s T= 1, 2, …, according to a log‐normal
distribution  μ σ( , )j s j s, , with parameters ∈μj s, and σ > 0j s, . Each company j has at time s a
company‐specific covariate x x=j s j, ,1, which varies from company to company but is constant
over time. The parameters of the log‐normal distribution are dependent on this quantitative
covariate and are affected by a time‐specific covariate t t=j s s, 1, , which is constant across
companies but varies over time. The covariates xj,1 are chosen equidistantly between 0.2 and 0.4
for the first 900 companies. In addition, the covariate of company 901 is equal to 0.7 and
increases in equidistant steps to 0.8 until company 1000. These 100 companies, thus, have
markedly higher cancellation rates compared with the other companies. The time‐specific
covariate t s1, is equal to 0 at s = 1 and increases in equidistant steps to 0.1 until s T= . Overall,
the parameters depend on the company‐ and time‐specific covariates in the following way:5

⋅ ⋅

μ x t

σ x t

= + − 3.5,

= 1.1 + 2 + 0.1.

j s j s

j s j s

, ,1 1,

, ,1 1,

(9)

Given the simulated cancellation rates and a threshold u, we apply the POT method and fit
the excesses at time sj over this threshold to a GPD. Because the cancellation rate observations
follow a log‐normal distribution with the parameters μj s, and σj s, , we can calculate the exact
quantile q α( )j s, for a chosen confidence level of α = 99.5% by inverting the log‐normal dis-
tribution. This enables us to define an error measure to evaluate the accuracy of estimating the
α‐quantile with the POT method. We run the simulation R = 1, 000 times and obtain in each
run k R= 1, 2, …, estimates q α( )j s, j k,

of the true quantile q α( )j s, j k,
at the corresponding time

5
The specifications in Equation (9) lead to summary statistics of the simulated cancellation rates ( Y μ σ~ ( , )j s j s j s, , , ), which are similar to the cancellation rates

observed in our empirical settings below.
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∈ ⊂s S T{1, 2, …, }j k j k, , of the excess. We define the error measure as the mean relative dif-
ference between the estimated and true quantile and take the average over all R runs:
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(10)

2.4.3 | Results

Table 1 provides the results of the error measure for the different estimation approaches (classic
POT, simultaneous dynamic POT with a joint empirical threshold, simultaneous dynamic POT
with an individual empirical threshold, one‐by‐one dynamic POT), and for different length of the
time series (T = 20, 40, 80). All of these approaches are applicable only for a “suitably large”
threshold. We do not have information on which threshold is high enough and, therefore, choose
for all approaches four different thresholds equal to the 0%, 30%, 60%, and 90% quantiles of the

TABLE 1 Simulation study results

20 years 40 years 80 years

(1) Classic POT

0% quantile 0.310 0.309 0.309

30% quantile 0.859 0.854 0.853

60% quantile 0.926 0.924 0.923

90% quantile 0.773 0.774 0.772

(2) Dynamic POT: simultaneous estimation

(2.1) Joint empirical threshold

0% quantile 0.310 0.310 0.308

30% quantile 0.047 0.038 0.033

60% quantile 0.050 0.040 0.034

90% quantile 0.062 0.049 0.040

(2.2) Individual empirical threshold

0% quantile 0.056 0.054 0.155

30% quantile 0.058 0.046 0.038

60% quantile 0.077 0.062 0.052

90% quantile 0.191 0.172 0.160

(3) Dynamic POT: one‐by‐one estimation

0% quantile 0.550 0.467 0.494

30% quantile – 0.390 0.230

60% quantile – – 0.259

90% quantile – – –

Note: For different estimation approaches (classic POT, simultaneous dynamic POT, one‐by‐one dynamic POT) and for
different lengths of the time series (T = 20, 40, 80), the error in estimating the 99.5% quantile of the underlying log‐normal
distribution as defined in (10) are displayed. For all approaches, we choose four different thresholds equal to 0%, 30%, 60%, and
90% quantiles of all cancellation rates. For the simultaneous dynamic POT, we also compare two threshold selection
approaches, one that ignores and one that acknowledges heterogeneity in individual thresholds (joint empirical threshold,
individual empirical threshold).
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corresponding cancellation rates. For the classic POT or the dynamic POT with a joint empirical
threshold, choosing the threshold equal to a specific quantile means that we have one threshold for
all companies. In contrast, for the dynamic POT with an individual empirical threshold and for the
one‐by‐one dynamic POT, this means that we have unique thresholdsuj for each company equal to
the chosen quantile based on their corresponding cancellation rates. We thus compare for the
simultaneous dynamic POT two threshold selection approaches, one that ignores and one that
acknowledges heterogeneity in individual thresholds.

We begin by focusing on the results for a time series of 40 years (Table 1, Column 3). First, we
compare the two versions of the simultaneous dynamic POT and find that the joint empirical
threshold selection approach performs better than the individual empirical threshold approach in all
cases, with the exception of the 0% quantile. The individual threshold is based on the empirical
quantile of only 40 observations and is, therefore, affected by outliers. This makes the joint empirical
threshold selection approach superior to the individual empirical threshold selection approach.
Second, we compare the simultaneous dynamic POT with the joint empirical threshold to the one‐by‐
one dynamic POT estimation and find marked differences in the estimation's accuracy. The one‐by‐
one dynamic POT estimation is limited to data within a single time series, which allows a reliable
estimation just for many data points. In the case of high thresholds, applying the dynamic POT
estimation to each company's time series separately is not possible due to limited data availability. In
cases for which the one‐by‐one dynamic POT estimation is applicable, this leads to a less‐accurate
estimation than does the simultaneous dynamic POT with the joint empirical threshold. Third, our
results in Table 1 demonstrates that the simultaneous dynamic POT always performs better than the
classic POT. The classic POT method has limited applicability in the case of data with heterogeneity
across time and companies, which is commonly present in company‐level panel data.

The results observed for a time series of 40 years are representative of those of time series with a
different length (Table 1, Columns 2 and 4). In addition, we find that the estimation's accuracy
improves with the length of the time period for all estimation approaches (with the exception of the
0% quantile). This effect is small for the classic POT estimation, considerably larger for the si-
multaneous dynamic POT estimation, and largest for the one‐by‐one dynamic POT estimation (see,
e.g., the 30% quantile). In principle, the one‐by‐one dynamic POT estimation will likely become
better than the simultaneous dynamic POT estimation if the number of time periods is sufficiently
large. In applications, however, such long time series are usually not available, or at least not
reliably available, due to changes in exogenous factors (e.g., regulation). In the range of time
periods with reliable data, the results in Table 1 support the use of the simultaneous dynamic POT
with the joint empirical threshold in our empirical settings, discussed below.

3 | EMPIRICAL ANALYSIS

3.1 | U.S. individual life insurance market

3.1.1 | Motivation

We employ the dynamic POT model to data from U.S. life insurers to demonstrate the ap-
plicability of our approach. Of all countries, the United States has the most readily available,
reliable, and extensive data. Using only U.S. data does not allow us to make a general statement
about life insurance markets but will give us a first indication of the effect of company‐level
covariates on extreme cancellation events. Moreover, it enables us to calibrate an empirically
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justified mass cancellation scenario for the U.S. market. U.S. life insurers can potentially face
very high cancellation rates, particularly after premium guarantee periods expire (SOA &
LIMRA, 2018, p. 29). To analyze this risk, we use available panel data at the company level.

3.1.2 | Company‐level, panel data

Our panel data include statistics on individual life insurance, collected from U.S. insurers' annual
statement reports by the National Association of Insurance Commissioners (NAIC). The U.S.
individual life insurance market distinguishes between two types of policies: Term insurance
provides coverage for a predetermined period, whereas permanent insurance provides coverage for
a whole life. Permanent insurance is either traditional whole life, universal life, variable life, or
variable universal life insurance (ACLI, 2018). The data provide the direct written premiums as
well as detailed portfolio information (e.g., policies in force, policies lost, policies issued) of 617 life
insurers between 1996 and 2018. The reporting date of all the variables is the end of the year.

Although the data do not include cancellation rates directly, we are able to calculate can-
cellation rates for life insurer j in year s by dividing the number of policies that were canceled
in s by the number of policies that were in force in s:

≔cancel
lap sur

lost inForce

lap sur

inForceProxy

+

+
=

+
.j s

US j s
US

j s
US

j s
US

j s
US

j s
US

j s
US

j s
US,

, ,

, ,

, ,

,

(11)

In this definition lapUS denotes the contracts that were canceled as result of nonpayment of pre-
miums, and surUS designates contracts that were canceled and a cash surrender value paid to the
policyholder. To capture all policies in force during the year (inForceProxyUS), we add all policies
that were lost during the year (lostUS) to the policies in force at the end of the year (inForceUS).

We select our data to avoid reporting inconsistencies and to restrict the analysis to U.S. life
insurance companies with a focus on primary insurance business. For each step of the data
selection process, Table 2 provides the number of company‐year observations and the number
of companies kept with each data cleaning step.6 The full sample includes 12,639 company‐year
observations of 617 life insurers between 1996 and 2018. In the first selection step, we keep
companies that exhibit at least one positive direct written premium between 1996 and 2018. In
the second and third steps, we keep companies with the share of policies assumed, which stem
from reinsurance or coinsurance activities and never exceed 20% and keep companies that
never exhibit a share of revived policies greater than 2%. These variables used in the sample
selection process are given by the following ratios:

≔ ∕shareAssumed assumed inForceProxy ,j s
US

j s
US

j s
US

, , ,
(12)

≔ ∕shareRevived revived inForceProxy .j s
US

j s
US

j s
US

, , ,
(13)

In the full sample, 97% of company‐year observations exhibit a share of assumed policies
smaller than 20%, and 97% of company‐year observations exhibit a share of revived policies
smaller than 2%. The first two steps of the data selection process, thus, restrict the analysis to
active insurers with a focus on primary insurance business rather than a significant reinsurance

6
Each permutation of the sample selection steps listed in Table 2 leads to the same selected sample.
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activity. The third step addresses the revival of lapsed policies. Because lapsed policies can be
revived as long as 5 years after the lapse has happened, we are unable to identify whether a
high number of lapses is the consequence of a high number of revivals in the subsequent year.
The remaining sample after these three data selection steps represents 67% of aggregate direct
written premiums and 35% of aggregate polices of the full sample.

Table 3 reports summary statistics of our company‐level panel data in the selected sample. The
reporting date of all the variables shown in the table is the end of the year. Direct written premiums
are reported in US$ thousand, while variables on the portfolio are reported in number of policies.
The descriptive summary of cancellation rates is in line with reported cancellation rates by SOA
and LIMRA (2018) and ACLI (2018). We display the histogram of the cancellation rates in the

TABLE 2 U.S. data: Sample selection process

Step Description
Observations
remaining

Companies
remaining

0 All company‐year observations between 1996 and 2018 12,639 617

1 Keep companies exhibiting at least one positive direct written
premium between 1996 and 2018

12,010 574

2 Keep companies with shareAssumedUS never exceeding 20% 8945 423

3 Keep companies with shareRevivedUS never exceeding 2% 7336 348

Selected sample 7336 348

Note: The steps of the sample selection process, the number of company‐year observations, and the number of companies kept
with each data‐cleaning step are provided.

TABLE 3 U.S. data: Summary statistics

Variable Description N Mean Pctl(25) Median Pctl(75)

dwpUS ($000) Direct written premium 7336 223,581 844 14,492 96,903

lapUS Policies lapsed 7336 15,174 51 1075 6159

surUS Policies surrendered 7336 5742 29 647 3390

lostUS Policies lost 7336 29,446 387 3592 16,189

issuedUS Policies issued 7336 24,671 15 1543 12,594

assumedUS Policies assumed 7336 2952 0 0 0

revivedUS Policies revived 7336 692 0 16 281

inForceT
US Term life in force 7336 87,778 42 3129 32,616

inForceP
US Permanent life in force 7336 192,437 1888 28,051 106,109

inForceUS Total in force 7336 290,120 3962 42,199 169,331

shareTermUS Share of term policies 7336 25.45% 0.74% 10.86% 39.89%

shareIssuedUS Share of issued policies 7336 9.05% 0.29% 4.95% 11.01%

interestUS Interest rate changes 23 0.15pp −0.35pp 0.11pp 0.43pp

cancelUS Cancellation rates 7336 6.27% 2.89% 4.79% 7.23%

Note: Summary statistics of the variables used in the U.S. analysis of extreme cancellation rates are provided. The data include
348 life insurers between 1996 and 2018.
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selected sample in Figure 1. While the median of cancellation rates is equal to 4.79%, the histogram
also shows cancellation rates above 30%. Because we are interested in a reliable estimate of the
99.5% quantile of the cancellation rates, employing the dynamic POT method seems particularly
suitable given the few observations in the tail. To take the dependency structure of our panel data
into account, we will use the number of policies in force (x inForceProxy= US) and the year
(s = 1996, 1997, …, 2018) as covariates in the estimation. We also include the following control
variables: (1) We monitor new business activity by the share of issued policies in terms of existing
policies (shareIssuedUS). (2) We track the focus of a life insurance company on term or permanent
life insurance policies by the share of term life policies in force between 1996 and 2018
(shareTermUS). (3) We control for changes in market interest rates by the first‐difference of U.S.
government bond yields with a duration of 10 years (interestUS).

3.1.3 | Model selection

The model specification consists of two steps: (1) threshold selection and (2) specification of the
models for the frequency and severity of extreme cancellation rates. The specification is done via
backward induction. For each threshold equal to the deciles of all cancellation rate observations, we
perform model selection for the severity of extreme cancellation rates individually. Based on the
chosen model for each threshold, we then select the lowest threshold with a good model fit according
to a Q‐Q plot. We describe the frequency and severity model selection process for the ex‐post selected
threshold of the 50% quantile of all cancellation rates, corresponding tou = 4.79% and 3668 excesses.
We test whether the classic or dynamic POT method is adequate in our analysis based on likelihood
ratio tests (LRTs) and the AIC value.7 For the selection of the correct model specification within the
dynamic POTmethod, we again base our selection on LRTs and AIC values. Whenever we introduce
a nonparametric dependence of the dynamic POT parameters on our covariates, we follow Chavez‐

FIGURE 1 U.S. data: Histogram of cancellation rates. The distribution of the 7336 cancellation rates
between 1996 and 2018 is displayed

7
A likelihood ratio test can reject the Model A in favor of Model B if Model A is nested in Model B. The test is calculated as ℓ ℓLR A B= −2[ ( ) − ( )]. LR is χ2

distributed with the degrees of freedom being equal to the additional number of parameters in B when compared with A. Additionally, we compare models

based on their AIC value, where among several models the one with lowest AIC value is preferred (see e.g. Hambuckers, Kneib et al. (2018) for a discussion on

AIC values in generalized additive models).
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Demoulin et al. (2016, p. 753) and determine the number of knots of the utilized natural cubic spline
according to the AIC.

We begin with the specification of the frequency parameter ρ. As shown in Table 4, we con-
secutively expand the model and compare the specifications based on an LRT. Our baseline model
consists of a constant term and the control variables presented in Section 3.1.2. We denote this model
by

→
ρ Z= ϑρ with a matrix Z , consisting of ones and the controls. First, we test the null hypothesis of

this baseline model (Model (1)) against the alternative of a parametric inclusion of the covariate
number of policies

→
ρ Z β x= ϑ +ρ 1 (Model (2)) via an LRT. At a 1% significance level, we cannot

reject the null hypothesis, meaning that the two likelihoods of Model (1) and Model (2) do not differ
by more than sampling error. In the next step, we find that a nonparametric inclusion of the number
of policies (Model (3)) does not lead to a marked improvement compared with the parametric
inclusion of the number of policies.8 Subsequently, we include time in a parametric way (Model (4))
and test it against Model (1). The LRT indicates a significant difference in the likelihoods of Model (1)
and Model (4). Finally, we vary the degrees of freedom df of the natural cubic spline, h s( )ρ

df( ) , to

TABLE 4 U.S. data: Model selection

u= 50% quantile, Nu= 3668 excesses LRT AIC Selection

Frequency parameter, ρ

(1)
→

ρ Z= ϑρ 10,203

(2)
→

ρ Z β x= ϑ +ρ 1 (1) : (2) × (p= .03) 10,201

(3)
→

ρ Z g x= ϑ + ( )ρ ρ
(1) – –

(4)
→

ρ Z β s= ϑ +ρ 2 (1) : (4) ✓ (p< .00) 10,100 ✓

(5)
→

ρ Z h s= ϑ + ( )ρ ρ
(5) (4) : (5) × (p= .01) 10,095

Severity parameter, ξ

(6)
→

ξ Z= ϑξ
→

ν Z= ϑν 18,008

(7)
→

ξ Z γ x= ϑ +ξ 1

→
ν Z= ϑν (6) : (7) ✓ (p < .00) 9493 ✓

(8)
→

ξ Z g x= ϑ + ( )ξ ξ
(1) →

ν Z= ϑν – –
(9)

→
ξ Z γ x γ s= ϑ + +ξ 1 2

→
ν Z= ϑν (7) : (9) × (p > .99) 9747

(10)
→

ξ Z γ x h s= ϑ + + ( )ξ ξ1
(1) →

ν Z= ϑν – –

Severity parameter, ν

(11)
→

ξ Z γ x= ϑ +ξ 1

→
ν Z= ϑν 22,710

(12)
→

ξ Z γ x= ϑ +ξ 1

→
ν Z δ x= ϑ +ν 1 (11) : (12) ✓ (p < .00) 22,686

(13)
→

ξ Z γ x= ϑ +ξ 1

→
ν Z g x= ϑ + ( )ν ν

(1) – –
(14)

→
ξ Z γ x= ϑ +ξ 1

→
ν Z δ x δ s= ϑ + +ν 1 2 (12) : (14) ✓ (p < .00) 22,505 ✓

(15)
→

ξ Z γ x= ϑ +ξ 1

→
ν Z h s= ϑ + ( )ν ν

(1) – –

Note: The model selection for the frequency parameter ρ and the severity parameters ξ and ν is displayed. For each parameter,
we consecutively expand the model by including the company covariate and the time covariate, first parametrically and then
nonparametrically. In the fourth column, we report the results of a LRTat a 1% significance level. We denote a significant
difference in the likelihood of the two models by “✓ ” and an insignificant difference by “×.” We also provide the
corresponding p value in parentheses. Whenever a df‐AIC plot indicates that the number of knots of the utilized natural cubic
spline is equal to 1 (corresponding to linearity), we do not perform an LRT and indicate this by “–.” The fifth column provides
the Akaike's information criterion (AIC) value for each model to indicate the model complexity. In the final column, we mark
the selected model by “✓ .”
Abbreviations: AIC, Akaike's information criterion; LRT, likelihood ratio test.

8
A df‐AIC plot (similar to Figure B1 in Supporting Information Appendix B) facilitates df = 1 for the function g x( )ρ

df( ) , which corresponds to the linear model

specification of Model (2).
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obtain the model with the lowest AIC value. Following Chavez‐Demoulin et al. (2016, p.753), we plot
the AIC value over the degrees of freedom ( ∈df 1, 2, …, 10), which supportsdf = 5, as an additional
increase in the degrees of freedom does not lead to a smaller AIC.9 We then test Model (4) against
this nonparametric inclusion of time, which, however, is not supported by the LRT test at a 1%
significance level.

Repeating this procedure for the severity parameters ξ (Models (6)–(10)) and ν (Models
(11)–(15)) leads to the following model specification:

→
ρ x s Z β s( , ) = ϑ + ,ρ 2 (14)

→
ξ x s Z γ x( , ) = ϑ + ,ξ 1 (15)

→
ν x s Z δ x δ s( , ) = ϑ + + .ν 1 2 (16)

Given the model specification of the ex‐post selected threshold equal to 50% of all cancellation rates,
we now turn to the threshold selection (Table 5). We start the analysis at the 0% quantile and proceed
in steps of 10 percentage points. For each threshold, we specify the model according to the steps
described in Table 4. Subsequently, we estimate the model and assess the model's goodness of fit in a
Q‐Q plot, in which we plot the model's residuals against the exponential distribution. The chosen
threshold is the smallest threshold so that we observe a good fit in the Q‐Q plot (Figure 3a). This
analysis leads us to select the 50% quantile as our threshold.

3.1.4 | Results

We estimate the model as specified in Equations (14)–(16). Table 6 provides the coefficients obtained
from estimating the generalized additive models.10 The estimated coefficient for the time variable in
the model for ρ demonstrates that the likelihood of excesses decreases over time. This is also shown
in Figure 2a, which provides boxplots of the parameter ρ for each year. Table 6 and Figure 2b indicate
a further negative effect of the portfolio size on the parameter ξ . In Figure 2b, we also display boxplots

TABLE 5 U.S. data: Threshold selection

Threshold, u Nu Model for ξ Model for ν Q‐Q plot

0% quantile 7336
→

ξ Z g x h s= ϑ + ( ) + ( )ξ ξ ξ
(2) (3) →

ν Z h s= ϑ + ( )ν ν
(6) ×××

10% quantile 6602
→

ξ Z γ x= ϑ +ξ 1

→
ν Z δ s= ϑ +ν 2 ××

20% quantile 5869
→

ξ Z γ x= ϑ +ξ 1

→
ν Z δ s= ϑ +ν 2 ××

30% quantile 5135
→

ξ Z γ s= ϑ +ξ 2

→
ν Z δ s= ϑ +ν 2 ×

40% quantile 4402
→

ξ Z γ x= ϑ +ξ 1

→
ν Z δ x δ s= ϑ + +ν 1 2 ×

50% quantile 3668
→

ξ Z γ x= ϑ +ξ 1

→
ν Z δ x δ s= ϑ + +ν 1 2 ✓

Note: The threshold selection procedure is provided. For different selected thresholds u, the number of observations Nu above
the chosen threshold and the chosen model specification for the severity parameters ξ and ν are provided. The last column
contains the observed goodness of fit in a Q‐Q plot based on “×” for bad quality and “✓ ” for good quality of fit.

9
Figure B1 in Supporting Information Appendix B displays the corresponding df‐AIC plot.
10
Figure B2 in Supporting Information Appendix B additionally displays the parameters in dependence of the covariates time and number of policies, fixing all

other variables equal to their median values.
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for the estimated parameters ξ for each decile of the policy covariate rather than showing the
estimated parameters ξ for each value of the policy covariate. In most cases, the shape parameter is
positive and implies a support between 0 and positive infinity, whereas cancellation rates are
bounded between 0 and 1. Even though our model implies an unbounded support of the GPD, the
probability of excesses above 1 is small.11 Finally, Table 6 provides the estimated coefficient for the
parameter ν, and Figure 2c,d display the corresponding boxplots of the estimates for β in the
corresponding year and in the decile of the policy covariate, respectively.

For each boxplot of Figure 2, we also provide pointwise two‐sided 95% confidence intervals
for the displayed median. Whereas we calculate asymptotic confidence intervals based on the
standard errors for the parameter ρ, we employ a bootstrap procedure for obtaining confidence
intervals for ξ and β. We compute bootstrap confidence intervals by slightly adjusting the
approach presented in Chavez‐Demoulin et al. (2016), which is based on the post‐backend
bootstrap of Chavez‐Demoulin and Davison (2005). First, we resample the model's residuals
with replacements in groups that exhibit the same decile of portfolio size, decile of share of new
business, decile of share of term life business, interest rate change, and same year. Second, we
calculate new excesses based on the original estimates for ξ and β. Third, we apply the original
model with fixed covariates and control variables to obtain new estimates for the severity
parameters ξ and β. We repeat this procedure 1,000 times and obtain pointwise two‐sided 95%
confidence intervals for each parameter estimate by calculating the 2.5% and 97.5% empirical
quantiles of the corresponding 1000 estimated values.

TABLE 6 U.S. data: Generalized additive model output

Dependent variable

ρ ξ ν

Parametric coefficients Coeff. (std. err.) Coeff. (std. err.) Coeff. (std. err.)

Policy covariate (m) −0.068*** 0.020

(0.008) (0.043)

Time −0.010*** −0.009

(0.001) (0.011)

Share of new business 0.561*** −1.019*** 4.055***

(0.041) (0.057) (0.554)

Share of term life 0.232*** 0.284*** 0.445*

(0.020) (0.041) (0.239)

Interest rate changes 0.938 0.024 −2.761

(1.104) (2.282) (13.517)

Intercept 20.286*** 0.201*** 13.742

(1.757) (0.018) (21.781)

Observations 7336 3668 3668

Log likelihood −5050 −5186 −11,253

Note: The output of the generalized additive model estimation for the parameters ρ ξ, , and ν, according to the Equations
(14)–(16) are displayed. For significance, *, **, and *** indicate the 10%, 5%, and 1% levels, respectively.

11
Based on the estimates for the shape parameter and the scale parameter, we calculated the probability of cancellation rates exceeding one in our model.

Given all these excess probabilities, we find that the empirical 95% quantile of the excess probabilities is smaller than 0.2%.
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Given the estimated parameters, we assess the model's goodness of fit and calculate 99.5%
quantiles of the cancellation rate observations and corresponding pointwise two‐sided 95% confidence
intervals (Figure 3). Figure 3a displays a Q‐Q plot, in which we plot the selected model's residuals
against the exponential distribution. The good fit observed in this plot supports our model selection.
Further, Figure 3b provides a boxplot of the estimated 99.5% quantiles for each year between 1996
and 2018. We observe a slight negative trend in the median of 99.5% quantiles over time, indicating
that the risk of high cancellation rates decreased over time (consistent with the coefficients of the time
parameter in Table 6 and the boxplot in Figure 2a). The boxplots in each year further show sub-
stantial heterogeneity in 99.5% quantiles. This suggests that life insurers are exposed heterogeneously
to high cancellation rates.

The heterogeneity is further affirmed by examining the 99.5% quantiles in dependence of the
number of policies. We provide boxplots of these estimates in Figure 3c for the deciles of the number
of policies. In line with Table 6 and Figure 2, Figure 3c indicates that companies with fewer policies
in force exhibit higher 99.5% quantiles. In contrast to small life insurance companies, which exhibit
99.5% quantiles as high as 40% (see the upper quartile in the boxplot), the companies in the highest
decile of the policy covariate exhibit 99.5% quantiles of around 20%. High cancellation rates are
additionally dependent on the share of new business in dependence of existing business and the
product portfolio (Figure 3d,e). We find that a high share of new business activity results in higher
cancellation rates, reaching levels of approximately 60% in the highest decile of this variable. In

(a) (b)

(c) (d)

FIGURE 2 U.S. data: Parameter estimates. (a) Boxplot of estimates for ρ over time, (b) boxplot of estimates for
ξ for the deciles of the number of policies, (c) boxplot of estimates for β over time, and (d) boxplot of estimates
for β for the deciles of the number of policies. Boxplots of the parameter estimates for ρ ζ, , and β in dependence of
time and the deciles of the policy covariate are displayed. In addition, “×” denotes pointwise two‐sided 95%
confidence intervals for the median of the parameter estimates shown in the corresponding boxplot
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Figure 3e, we additionally observe that a portfolio with a high share of term life business is more
exposed to high cancellation rates compared with a portfolio that consists mainly of permanent
insurance. Although life insurance companies with predominantly permanent life insurance policies
exhibit 99.5% quantiles of 20%, we find that life insurers, which focus mainly on term life policies,
have 99.5% quantiles up to 50%.

(a) (b)

(c) (d)

(e) (f)

FIGURE 3 U.S. data: Estimation results. (a) Q‐Q plot: Goodness of fit; (b) boxplot of 99.5% quantiles over
time; (c) boxplot of 99.5% quantiles for the deciles of the number of policies; (d) boxplot of 99.5% quantiles for the
deciles of the share of new business; (e) boxplot of 99.5% quantiles for the deciles of the share of term life; (f) boxplot
of 99.5% quantiles for the interest rate changes. A goodness of fit plot in (a) and estimation results in (b)–(f) are
displayed. The goodness of fit plot is a Q‐Q plot based on the selected model's residuals. (b) provides a boxplot of
estimated 99.5% quantiles for each year between 1996 and 2018. (c) shows the boxplot of estimated 99.5% quantiles
for the deciles of the policy covariate; (d), for the deciles of the share of new business; (e), for the deciles of the share
of term life; and (f), for the interest rate changes. The estimation results also include pointwise two‐sided 95%
confidence intervals for the median of the 99.5% quantiles, indicated by “×” in the corresponding boxplot
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The previous literature models extreme cancellation rates as a result of changes in interest
rates (Barsotti et al., 2016; Loisel & Milhaud, 2011). Figure 3f displays boxplots of the 99.5%
quantiles dependent on the interest rate changes in U.S. government bonds with a duration of
10 years. At least in our observed range of interest rate changes, we do not identify any pattern
between changes in interest rates and high cancellation rates. In addition to Figure 3f, Table 6
shows that the coefficients of the interest rate variable are insignificant.

3.2 | German life insurance market

3.2.1 | Motivation

Cancellation risk is the second most important risk factor for European life insurers and is,
therefore, explicitly addressed in European insurance regulation (EIOPA, 2011). Within its stan-
dard formula, Solvency II requires life insurers to calculate additional capital demands for adverse
cancellation events, such as a permanent increase or decrease of future cancellation rates. In
addition, life insurers must apply a one‐time shock mass lapse scenario with cancellation rates
equal to 40%. Interestingly, this level of 40% has not been predicted by utilizing data but is based
only on expert judgment. In contrast to the expert judgment‐based approach in Solvency II's
standard model, our approach can use data to calibrate an empirically justified mass cancellation
scenario. For this purpose, we again use available panel data at the company level.

3.2.2 | Company‐level, panel data

The German Federal Financial Supervisory Authority (BaFin) collects information on all German life
insurers subject to the Solvency II regulation. German life insurers predominantly offer endowment
policies, term life, occupational disability, annuity, unit‐linked insurance, and group life insurance.12

TABLE 7 German data: Summary statistics

Variable Description N Mean Pctl(25) Median Pctl(75)

gepDE (EUR) Gross earned premium 2344 720 m 63m 216m 779m

inForeDE (EUR) Amount of insurance in force 2344 23 bn 2 bn 9 bn 27 bn

issuedDE (EUR) Amount of insurance issued 2344 2 bn 92m 525m 2 bn

shareIssuedDE Share of issued policies 2344 11.34% 5.02% 8.59% 13.60%

interestDE Interest rate changes 23 −0.25pp −0.54pp −0.33pp 0.07pp

cancelDE Cancellation rates 2344 5.15% 3.35% 4.67% 6.18%

Note: Summary statistics of the variables used in the German analysis of extreme cancellation rates are provided. The data
include 122 life insurers between 1996 and 2018.

12
An endowment policy either pays the sum insured in the case of death or if the insured person is still at life at the end of the contract period. A term life

policy pays the sum insured if the insured person dies within the contract period. An occupational disability policy pays an annuity until retirement if the

insured person is no longer able to work. An annuity policy pays an annuity until the insured person's death starting at a predefined age. Special forms of

annuities are Riester and R'rup policies (see Börsch‐Supan & Wilke, 2004 for more details). Finally, a unit‐linked policy pays the sum insured if the insured

person is still alive at the end of the contract period. The accrued interest is dependent on the performance of stocks or funds.
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Although we are unable to distinguish between these product categories, Eling and Kiesenbauer
(2013) use policyholder‐level data and find that, in contrast to other markets, the German life
insurance market exhibits only small differences in cancellation rates across product categories. Our
data provide gross earned premiums, detailed portfolio information (e.g., amount of insurance in
force, amount of insurance issued), and cancellation rates of 122 life insurers between 1996 and 2018.
In contrast to the U.S. analysis, we do not apply any filters because the BaFin database includes only
active primary insurers, and policies can be revived for only as long as one month. Table 7 provides
the summary statistics of our company‐level panel data, and Figure 4 provides a histogram of the
2344 cancellations rates. Although the median cancellation rates in both the German and the U.S.
data is around 4.7%, U.S. cancellation rates exhibit higher variability. The interquartile range of
cancellation rates is 4.34% for the United States and 2.83% for Germany. Even though German
cancellation rates are less variable as compared with those of the U.S. market, Figure 4 also shows
cancellation rates above 20% in the German market. Because we are again interested in a reliable
estimate of the 99.5% quantile of the cancellation rates, employing the dynamic POT method seems
particularly suitable, given the few observations in the tail. Due to data availability, we will use the
gross earned premium instead of the number of policies as a covariate in the German estimation. We
additionally include time as a covariate and the following control variables: (1) We monitor new
business activity by the share of issued policies in terms of existing policies (shareIssuedDE). (2) We
control for changes in market interest rates by the first‐difference of German government bond yields
with a duration of 10 years (interestDE).

3.2.3 | Model selection

In the German analysis, we select a threshold equal to the 65% quantile of all cancellation rates,
corresponding to u = 5.48% and 821 excesses. Again, the specification of the threshold is done
via backward induction. For each threshold equal to the deciles of all cancellation rates, we
perform model selection for the severity of extreme cancellation rates. We then choose the
lowest threshold with a good model fit, according to a Q‐Q plot. As in the U.S. analysis, we
specify the model for the frequency parameter ρ and severity parameters ξ and ν based on LRTs
and the AIC value (Table 8).

FIGURE 4 German data: Histogram of cancellation rates. The distribution of the 2344 cancellation rates
between 1996 and 2018 is displayed
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We begin with the specification of the frequency parameter ρ, and our baseline is again a
model,

→
ρ Z= ϑρ, with a matrix Z that consists of ones and the control variables of Section 3.2.2.

We test the null hypothesis of this baseline model (Model (1)) against the alternative of a

parametric inclusion of the covariate gross earned premium,
→

ρ Z β x= ϑ +ρ 1 (Model (2)) via an

LRT. At a 1% significance level, we can reject the null hypothesis of a constant model. Although
we cannot reject the null hypothesis of Model (2) when comparing it to a nonparametric
inclusion of the gross earned premium (Model (3)), a parametric inclusion of time is supported
(Model (4)). Finally, a df‐AIC plot and an LRT test facilitate to specify the parameter ρ as a
natural cubic spline function of time with two degrees of freedom (Model (5)). We repeat this
procedure for the severity parameters ξ (Models (6)–(10)) and ν (Models (11)–(15)) and finally
obtain the following model specification:13

→
ρ x s Z β x h s( , ) = ϑ + + ( ),ρ ρ1

(2) (17)

TABLE 8 German data: Model selection

u= 65% quantile, Nu= 821 excesses LRT AIC Selection

Frequency parameter, ρ

(1)
→

ρ Z= ϑρ 3139

(2)
→

ρ Z β x= ϑ +ρ 1 (1) : (2) ✓ (p< .01) 3131

(3)
→

ρ Z g x= ϑ + ( )ρ ρ
(1) – –

(4)
→

ρ Z β x β s= ϑ + +ρ 1 2 (2) : (4) ✓ (p< .00) 2969

(5)
→

ρ Z β x h s= ϑ + + ( )ρ ρ1
(2) (4) : (5) ✓ (p< .00) 2959 ✓

Severity parameter, ξ

(6)
→

ξ Z= ϑξ
→

ν Z= ϑν 2201

(7)
→

ξ Z γ x= ϑ +ξ 1

→
ν Z= ϑν (6) : (7) × (p > .99) 2875

(8)
→

ξ Z g x= ϑ + ( )ξ ξ
(2) →

ν Z= ϑν (6) : (8) ✓ (p< .00) 2136

(9)
→

ξ Z g x γ s= ϑ + ( ) +ξ ξ
(2)

2

→
ν Z= ϑν (8) : (9) ✓ (p< .00) 2077 ✓

(10)
→

ξ Z g x h s= ϑ + ( ) + ( )ξ ξ ξ
(2) (1) →

ν Z= ϑν – –

Severity parameter, ν

(11)
→

ξ Z g x γ s= ϑ + ( ) +ξ ξ
(2)

2

→
ν Z= ϑν 7563

(12)
→

ξ Z g x γ s= ϑ + ( ) +ξ ξ
(2)

2

→
ν Z δ x= ϑ +ν 1 (11) : (12) ✓ (p< .00) 7342 ✓

(13)
→

ξ Z g x γ s= ϑ + ( ) +ξ ξ
(2)

2

→
ν Z g x= ϑ + ( )ν ν

(1) – –
(14)

→
ξ Z g x γ s= ϑ + ( ) +ξ ξ

(2)
2

→
ν Z δ x δ s= ϑ + +ν 1 2 (12) : (14) × (p > .99) 7427

(15)
→

ξ Z g x γ s= ϑ + ( ) +ξ ξ
(2)

2

→
ν Z δ x h s= ϑ + + ( )ν ν1

(1) – –

Note: The model selection for the frequency parameter ρ and the severity parameters ξ and ν are presented. For each
parameter, we consecutively expand the model by including the company covariate and the time covariate, first parametrically
and then nonparametrically. In the fourth column, we report the result of an LRT at a 1% significance level. We denote a
significant difference in the likelihood of two models by “✓ ” and an insignificant difference by “×.” We also provide the
corresponding p value in parentheses. Whenever a df‐AIC plot supports that the number of knots of the utilized natural cubic
spline is equal to 1 (corresponding to linearity), we do not perform an LRT and indicate this by “–.” The fifth column provides
the AIC value for each model to indicate the model complexity. In the final column we mark the selected model by “✓ .”
Abbreviations: AIC, Akaike's information criterion; LRT, likelihood ratio test.

13
The dependence of the parameter ξ on time is unusual. In most applications, the shape parameter does not depend on time (see e.g., Chavez‐Demoulin et al.,

2016). However, in our empirical setting, this does not lead to a switch between finite/infinite first moment of the GPD over time.
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→
ξ x s Z g x γ s( , ) = ϑ + ( ) + ,ξ ξ

(2)
2 (18)

→
ν x s Z δ x( , ) = ϑ + .ν 1 (19)

We now return to the threshold selection (Table 9). The chosen threshold is the smallest
threshold, so we observe a good fit in the Q‐Q plot (Figure 6a). This analysis supports our
selection of the 65% quantile as our threshold.14

3.2.4 | Results

We estimate the model as specified in Equations (17)–(19). Table 10 provides the parametric
coefficients and the degrees of freedom of the smooth terms obtained from estimating the
generalized additive models.15

The estimated coefficient for the policy covariate in the model for ρ demonstrates that the
likelihood of excesses decreases with increasing portfolio size. This is also shown in Figure 5b, which
provides boxplots of the parameter ρ for each decile of the gross earned premium. Figure 5a also
displays a negative relationship between the likelihood of excesses over time. Although the parameter
ρ decreases over time, Table 10 and Figure 5c indicate a positive relationship between ξ and time.
Consistent with the U.S. analysis, Table 10 and Figure 5d shows a further negative effect of the
portfolio size on the parameter ξ . Again, even though positive values of ξ imply an unbounded
support of the GPD, the probability of excesses above 1 is small.16 Finally, Table 10 provides the
estimated coefficient for the parameter ν, and Figure 5e,f display the corresponding

TABLE 9 German data: Threshold selection

Threshold, u Nu Model for ξ Model for ν Q‐Q plot

10% quantile 2110
→

ξ Z g x= ϑ + ( )ξ ξ
(4) →

ν Z= ϑν ×××

20% quantile 1881
→

ξ Z= ϑξ
→

ν Z h s= ϑ + ( )ν ν
(2) ×××

30% quantile 1641
→

ξ Z= ϑξ
→

ν Z δ x δ s= ϑ + +ν 1 2 ××

40% quantile 1407
→

ξ Z γ s= ϑ +ξ 2

→
ν Z g x δ s= ϑ + ( ) +ν ν

(3)
2 ××

50% quantile 1172
→

ξ Z g x γ s= ϑ + ( ) +ξ ξ
(3)

2

→
ν Z h s= ϑ + ( )ν ν

(2) ×

55% quantile 1055
→

ξ Z g x= ϑ + ( )ξ ξ
(3) →

ν Z h s= ϑ + ( )ν ν
(2) ×

60% quantile 938
→

ξ Z g x= ϑ + ( )ξ ξ
(2) →

ν Z δ s= ϑ +ν 2 ×

65% quantile 821
→

ξ Z g x γ s= ϑ + ( ) +ξ ξ
(2)

2

→
ν Z δ x= ϑ +ν 1 ✓

Note: The threshold selection procedure is presented. For different selected thresholds u, the number of observations Nu
above the chosen threshold and the chosen model specification for the severity parameters ξ and ν are presented. The
last column indicates the observed goodness of fit in a Q‐Q plot based on “×” for bad quality and “✓ ” for good quality
of fit.

14
We start with the 10% quantile as our threshold and proceed in steps of 10 percentage points. After the 50% quantile, we start moving in 5 percentage points

increments to still have a reasonably large sample size.
15
Figure B3 in Supporting Information Appendix B additionally displays the parameters in dependence of the covariates time and gross earned premium,

fixing all other variables equal to their median values.
16
Based on the estimates for the shape parameter and the scale parameter, we calculated the probability that cancellation rates exceed one in our model. Given

all these excess probabilities, we find that the empirical 95% quantile of the excess probabilities is smaller than 0.2%.
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boxplots of the estimates of β in the corresponding year and in the decile of the policy
covariate, respectively.

Given the estimated parameters, we again assess the model's goodness of fit and cal-
culate 99.5% quantiles of the cancellation rate observations and corresponding pointwise
two‐sided 95% confidence intervals (Figure 6). Figure 6a shows the model's goodness of fit
in a Q‐Q plot and supports our model selection. Figure 6b presents boxplots for the
estimated 99.5% quantiles for each year between 1996 and 2018. The median of 99.5%
quantiles never exceeds 22% (the corresponding upper bound of the confidence interval
never exceeds 25%) and exhibits a decreasing trend over this time period. The higher level
of extreme cancellation rates at the beginning of the observation period is likely a result of
the dot‐com bubble. During this period, some German life insurers faced solvency issues
and, thus, a decline in trust in their company (e.g., “Mannheimer Leben,” Protektor,
2014). In comparison with the U.S. analysis, however, we observe less heterogeneity in
99.5% quantiles for each year.

Further, Figure 6c displays boxplots of the 99.5% quantiles dependent on the deciles of
the gross earned premium. Figure 6c indicates that the level of extreme cancellation rates
is decreasing in the gross earned premium (in line with Table 10 and Figure 5). Although
the companies in the lowest decile of the policy covariate exhibit 99.5% quantiles of about
20%–25%, this risk lies at around 10% for life insurers in the largest decile of the policy

TABLE 10 German data: Generalized additive model output

Dependent variable

ρ ξ ν

Parametric coefficients Coeff. (std. err.) Coeff. (std. err.) Coeff. (std. err.)

Policy covariate (in bn) −0.010* −0.397***

(0.006) (0.077)

Time 0.026***

(0.003)

Share of new business 0.290*** −0.208 2.463*

(0.078) (0.155) (1.442)

Interest rate changes −1.282 1.420 −12.083

(1.629) (2.472) (23.818)

Intercept 0.322*** −51.932*** −4.022***

(0.015) (6.878) (0.311)

Smooth terms df df df

Policy covariate (in bn) 2***

Time 2***

Observations 2344 821 821

Log likelihood −1479 −860 −2670

Note: The output of the generalized additive model estimation for the parameters ρ ξ, , and ν, according to Equations (17)–(19)
are presented. For significance, *, **, and *** indicate the 10%, 5%, and 1% levels, respectively.
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covariate. As in the U.S. analysis, Figure 6d demonstrates that a high share of new
business activity results in higher cancellation rates, which are estimated to reach as high
as 35%. In addition, in Figure 6e, we observe, in line with the U.S. analysis, no pattern
between changes in interest rates and high cancellation rates. This is also consistent with
the insignificant coefficients of the interest rate variable in Table 10.

Our dynamic POT estimation also enables us to calculate the confidence level that
corresponds to a cancellation rate of 40%. In each year between 1996 and 2018, the median

(a) (b)

(c) (d)

(e) (f)

FIGURE 5 German data: Parameter estimates. (a) Boxplot of estimates for ρ over time; (b) boxplot of estimates
for ρ for the deciles of the gross earned premium; (c) boxplot of estimates for ξ over time; (d) boxplot of estimates for
ξ for the deciles of the gross earned premium; (e) boxplot of estimates for β over time; (f) boxplot of estimates for β
for the deciles of the gross earned premium. Boxplots of the parameter estimates for ρ ξ, , and β in dependence of
time and the deciles of the policy covariate are displayed. In addition, “×” denotes pointwise two‐sided 95%
confidence intervals for the median of the parameter estimates shown in the corresponding boxplot
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of the implied confidence levels lies above 99.9%. We thus conclude that Solvency II's
mass lapse assumption corresponds to the 99.9% quantile rather than the 99.5% quantile,
on which the solvency capital requirement in European insurance regulation is usually
based.

(a) (b)

(c)

(e)

(d)

FIGURE 6 German data: Estimation results. (a) Q‐Q plot: Goodness of fit; (b) boxplot of 99.5% quantiles
over time; (c) boxplot of 99.5% quantiles for the deciles of the gross earned premium; (d) boxplot of 99.5%
quantiles for the deciles of the share of new business; (e) boxplot of 99.5% quantiles for the interest rate
changes. A goodness of fit plot in (a) and estimation results in (b)–(e) are displayed. The goodness of fit plot is a
Q‐Q plot based on the selected model's residuals. (b) provides a boxplot of estimated 99.5% quantiles for each
year between 1996 and 2018. (c) shows the boxplot of estimated 99.5% quantiles for the deciles of the policy
covariate; (d), for the deciles of the share of new business; and (e), for the interest rate changes. The estimation
results also include pointwise two‐sided 95% confidence intervals for the median of the 99.5% quantiles
indicated by “×” in the corresponding boxplot
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4 | DISCUSSION

4.1 | Implications for the modeling of extreme cancellation rates

Our results allow several conclusions. Although the U.S. and the German life insurance market
are different in terms of their offered products, we find that the effects of the covariates
(portfolio size, time) and control variables (share of new business, interest rate changes) are
consistent across both markets. This demonstrates the validity of the employed estimation
method. In both the U.S. and the German life insurance market, we find that the risk of
extreme cancellation rates is decreasing in proportion to the size of the company's portfolio. We
also observe a positive relationship between new business activity and extreme cancellation
rates. Because policies in early policy years are subject to higher cancellation rates, a high share
of new business raises the likelihood and severity of an extreme cancellation event.

We also focus on the effect of changes in interest rates on extreme cancellation rates. The
previous literature models extreme cancellation rates as a result of increasing interest rates
(Barsotti et al., 2016; Loisel & Milhaud, 2011). Our analysis shows no pattern between changes in
interest rates and high cancellation rates. However, interest rates are mainly decreasing in our time
period, which does not allow us to test the effect of increases in interest rates on extreme can-
cellation rates. The U.S. analysis further indicates the importance of the product portfolio on
cancellation rates, at least in certain markets. Although life insurance companies with pre-
dominantly permanent life insurance policies exhibit 99.5% quantiles of 20%, we find that life
insurers, which focus mainly on term life policies, have 99.5% quantiles up to 50%. Renshaw and
Haberman (1986), Cerchiara et al. (2009), and Milhaud et al. (2011) find that this also holds at
normal cancellation rate levels, using data from Scotland, Italy, and Spain, respectively. With the
German data, we are, unfortunately, unable to distinguish between product categories. Eling and
Kiesenbauer (2013), however, show that, in contrast to other markets, the German life insurance
market exhibits only small differences in cancellation rates across product categories. Still, a
thorough analysis of the German market by product type is a promising area for future research.

Interestingly, the results above identify dependencies of a mass cancellation event on
company characteristics, which, so far, have not been taken into account in Solvency II. The
adverse cancellation rate scenarios used to calculate the solvency capital requirement do not
distinguish between small and large insurance companies, run‐off companies without new
business, or companies that exhibit a high share of new business. These scenarios also are not
dependent on the product type. We further find that the current scenario of 40% for a mass
cancellation event in Solvency II's standard model has, at least for the German life insurance
market, no empirical foundation. According to our analysis, a cancellation rate of 40% corre-
sponds to the 99.9% quantile. The 99.5% quantile, on which the solvency capital requirement in
European insurance regulation is usually based, lies at approximately 20%–25% (see the median
of 99.5% quantiles and the corresponding upper bound of the confidence interval in Figure 6b).

4.2 | Implications for the solvency capital requirement calculation

The solvency capital requirement for European life insurers is sensitive to changes in
cancellation rates and is particularly sensitive to a mass cancellation scenario (EIOPA, 2011).
South African insurer Old Mutual (2016) reports that the solvency capital requirement for its
business in Europe for a mass cancellation event is equal to 500 million pounds. Austrian life
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insurer UNIQA (2017) estimates the capital demand for this risk to be 262 million Euros.
European insurance regulation define the required capital for an adverse scenario, such as a
mass cancellation event, as the reduction in expected future profits due to deviations from the
company's best‐estimate assumptions. In the following, we illustrate the sensitivity of a term
life policy's expected profitability to a mass cancellation event.17

The expected profitability, called technical provision (TP), at time τ is defined as the dif-
ference between the expected present value of future cash outflows at time τ and the expected
present value of future cash inflows at time τ . To calculate the technical provision under
Solvency II, we discount expected future cash flows by discount factors, which can be calcu-
lated from the spot rates provided by EIOPA (2019). For example, a negative technical provi-
sion at contraction (τ = 0) means that the contract generates overall expected future profits for
the insurer. In our illustration, we consider a 40‐year‐old insured who purchases a term life
policy with a contract period of 20 years and a sum insured of 150,000 Euros (death benefit).18

The insurer expects cash inflows in terms of a level premium at time τ = 0, 1, …, 19 and is
obliged to pay the specified death benefit at time τ = 1, 2, …, 20 if the insured dies. Based on the
above assumptions and using mortality rates and a guaranteed interest rate of 0.9%, according to
the German Actuarial Association, the policy's premium is equal to 495.37 Euros. During the
contract period, the policyholder can exercise the option to cancel the policy, which terminates
future premium payments as well as the death benefit. In the calculation of expected future profits,
an insurer assumes best‐estimate cancellation rates for each year within the contract period. We
use best‐estimate cancellation rates, which are typical for a term life policy with a contract period of
20 years in the German market (Milbrodt & Helbig, 2008). Cancellation rates are high in the first
policy years and are decreasing afterward.19 Figure 7 shows the expected profitability of the policy
under best‐estimate cancellation assumptions as well as two mass cancellation scenarios: We (1)
consider Solvency II's 40% mass lapse shock and (2) calculate the expected profitability with a 25%
mass lapse shock, as it is supported by our analysis in Section 3.2.4.

According to European insurance regulation, we calculate the expected profitability at time
τ under a mass cancellation event by taking the best‐estimate cancellation rates but replacing
the cancellation rate at time τ + 1 by the mass lapse shock (40% according to Solvency II, and
25% according to our calculation). The figure shows that, for the first eight contract years, the
technical provision (see the solid line) is negative, meaning that the policy generates an ex-
pected future profit for the insurer. Afterward, the technical provision is positive, indicating
that the policy generates an expected future loss. It is thus most profitable for the insurance
company if the insured does not terminate her term life policy during the first contract years
but, rather, cancels it as soon as the technical provision becomes positive in later contract years.
Following this logic, it is reasonable that a mass lapse scenario (see the dashed lines) leads to a
higher technical provision during the first six years and to a lower technical provision after this
period when compared with the best‐estimate scenario.

Given the technical provision over time, we can do a back‐of‐the‐envelope calculation of the
effect of a mass lapse event on the capital demand for a life insurance portfolio. First, we build a
portfolio of term life policies by assuming a constant new business volume of 6500 policies over

17
Supporting Information Appendix A provides the corresponding actuarial calculations in detail.

18
On average, Germans purchase a home at the age of 40. They usually purchase a term life policy to hedge the risk of an early death, which leaves family

members with the debt incurred by building loans. In 2018, the average period for building loans was 20 years and the average sum insured for term policies

was 150,000 Euros (BaFin, 2019; SOEP, 2019).
19
Column 2 of Table A1 in Supporting Information Appendix A displays these best‐estimate cancellation rates.
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the next 20 years. This figure corresponds to the average number of issued term life policies in
Germany in 2018 (BaFin, 2019). At time τ = 0, we have 6500 policies. Considering the above
mortality and cancellation rates, we expect that, of these 6500 policies, 6119 policies are left in
the portfolio at time τ = 1; then, 5690 policies, at time τ = 2; and, finally, 3204 policies, at time
τ = 19. Second, we calculate the expected profitability of the term life policy under best‐
estimate cancellation rates and under a mass lapse scenario for each point in time. For ex-
ample, the expected profitability at time τ = 0 is 2149 Euros (TP (0) = −2, 149 in Figure 7).
Assuming a mass cancellation scenario with a shock level of 40% reduces the profitability of
this policy to 1549 Euros and, with a shock level of 25%, to 1812 Euros. Performing this
calculation for each point in time τ = 0, 1, …, 19 provides the capital demand for the above
portfolio that consists of term life policies. The capital demand is equal to 12,310,895 Euros
with a mass lapse shock level of 40% and 6,920,217 Euros with a mass lapse shock level of 25%.
Therefore, reducing the shock level for the mass lapse scenario from 40% to 25% can reduce the
capital demand for lapse risk by 5 million Euros for this portfolio.20 This illustration and the
figures reported by Old Mutual (2016) and UNIQA (2017) demonstrate that the assumption of a
40% mass lapse shock in the cancellation risk model results in a high capital demand. We thus
conclude that the overstatement of the mass lapse event in Solvency II leads to significant over‐
reserving compared with empirically more justifiable scenarios.

FIGURE 7 Sensitivity of the technical provision to Solvency II's mass lapse scenario. The expected
profitability of a term life policy under best‐estimate cancellation assumptions and two mass cancellation
scenarios is displayed. We (1) consider Solvency II's 40% mass lapse shock and (2) calculate the expected
profitability with a 25% mass lapse shock, as it is supported by our analysis in Section 3.2.4

20
Solvency II defines the capital demand for a portfolio as maximum capital demand required under the following three scenarios: (1) mass lapse shock of 40%,

(2) 50% increase in best‐estimate cancellation rates, and (3) 50% decrease in best‐estimate cancellation rates. In our example, the 25% mass lapse shock still

requires more capital than a 50% increase in best‐estimate cancellation rates and approximately the same capital as a 50% decrease in best‐estimate cancellation

rates. Supporting Information Appendix A provides all details of the calculation.
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5 | CONCLUSION

We contribute to the literature by assessing the risk of a mass cancellation scenario in life
insurance. As extreme cancellation rates are rare events, data sourced from only one insurer
do not provide enough observations to assess this tail risk. We thus use the dynamic peaks
over the threshold method developed by Chavez‐Demoulin et al. (2016) to take quantitative
covariates into account. We apply this approach to U.S. data and show that, depending on
product type, cancellation rates up to 50% are a good assumption for a mass cancellation
scenario in this market. Further, we provide implications for European insurance regulation.
We discuss the appropriateness of Solvency II's mass lapse scenario by using German data.
Cancellation rates in the range of 20%–25% reflect the risk of a mass cancellation scenario in
the German market. This calls into doubt whether the current scenario of a 40% cancellation
rate in Solvency II's standard model is empirically justified. In both the United States and
Germany, the mass cancellation scenario is dependent on the portfolio size, which provides
some validity to the use of (partial) internal models when assessing reserves for mass can-
cellation scenarios. Finally, the marked differences in the estimated mass cancellation sce-
narios between the U.S. companies that sell predominantly term life insurance and those that
sell predominantly permanent life insurance indicate that the product type has an effect on
the appropriate mass cancellation scenario, at least in certain markets. Because national life
insurance markets in Europe greatly differ with regard to their dominant products (Standard
& Poors, 2018), it can thus be expected that they differ with respect to their appropriate mass
cancellation scenario as well.

Our work provides some direction for further research. Even though Eling and
Kiesenbauer (2013) report only minor differences in the cancellation rates of different pro-
duct types in the German market, future research should nevertheless employ the dynamic
POT method on a richer data set to analyze the mass cancellation scenario by product type in
the German market. Given the differences by product type in the U.S. analysis, different mass
cancellation scenarios for different product types could be adequate in the German market as
well. Because such data are not publicly available in a panel structure of the entire market,
cooperation with a regulating entity, such as BaFin or EIOPA, is likely required. In addition,
the lack of available public data for time periods with increasing interest rates allows us to
draw conclusions only about economies with falling or stagnant interest rates. Further re-
search on other time periods could provide an estimate for the influence of interest rate
development on mass cancellation risk. Finally, the approach of modeling the mass cancel-
lation scenario equally for all European life insurance markets is called into question in our
results. An empirical study that uses data from several different national insurance markets
in Europe would be able to test it directly.
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