Bayesian nonparametric predictive modeling of group health claims

Recurso electrónico / electronic resource
Registro MARC
LDR  00000cab a2200000 4500
001  MAP20150006219
003  MAP
005  20150212144340.0
008  150206e20150112esp|||p |0|||b|spa d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎6
1001 ‎$0‎MAPA20150006295‎$a‎Fellingham, Gilbert W.
24510‎$a‎Bayesian nonparametric predictive modeling of group health claims‎$c‎Gilbert W. Fellingham, Athanasios Kottas, Brian M. Hartman
520  ‎$a‎Models commonly employed to fit current claims data and predict future claims are often parametric and relatively inflexible. An incorrect model assumption can cause model misspecification which leads to reduced profits at best and dangerous, unanticipated risk exposure at worst. Even mixture models may not be sufficiently flexible to properly fit the data. Using a Bayesian nonparametric model instead can dramatically improve claim predictions and consequently risk management decisions in group health practices. The improvement is significant in both simulated and real data from a major health insurer¿s medium-sized groups. The nonparametric method outperforms a similar Bayesian parametric model, especially when predicting future claims for new business (entire groups not in the previous year¿s data). In our analysis, the nonparametric model outperforms the parametric model in predicting costs of both renewal and new business. This is particularly important as healthcare costs rise around the world
650 4‎$0‎MAPA20120011137‎$a‎Predicciones estadísticas
650 4‎$0‎MAPA20100065242‎$a‎Teorema de Bayes
650 4‎$0‎MAPA20080592059‎$a‎Modelos predictivos
650 4‎$0‎MAPA20080602437‎$a‎Matemática del seguro
7001 ‎$0‎MAPA20150006691‎$a‎Kottas, Athanasios
7001 ‎$0‎MAPA20130016856‎$a‎Hartman, Brian M.
7730 ‎$w‎MAP20077100574‎$t‎Insurance : mathematics and economics‎$d‎Oxford : Elsevier, 1990-‎$x‎0167-6687‎$g‎12/01/2015 Volumen 60 Número - enero 2015 , p. 1-10