Pricing flood insurance with a hierarchical physics-based model

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-7.xsd">
<mods version="3.7">
<titleInfo>
<title>Pricing flood insurance with a hierarchical physics-based model</title>
</titleInfo>
<name type="personal">
<namePart>Boudreault, Mathieu</namePart>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">usa</placeTerm>
</place>
<dateIssued encoding="marc">20200601</dateIssued>
<issuance>continuing</issuance>
<frequency authority="marcfrequency"/>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract>Floods account for a large part of global economic losses from natural disasters. As a result, the private insurance sector is increasingly participating in the financial risk sharing, thus expanding the role of actuaries to flood risk management. In this article, we investigate pricing and spatial segmentation of flood risk in the context of private insurance, meaning that individual risk assessment should minimize adverse selection. As such, we design a hierarchical flood risk model that allows an assessment at the individual level. Our model relies on a chain of physics-based climate, hydrological, and hydraulics modules combined with civil engineering methods to map the distribution of individual flood losses at high resolution. Building on such approach, we design pricing and segmentation methods tailored for flood risk management. We then apply the methods to study flood risk in a small city in the province of Quebec. We calculate premiums, analyze the impacts of risk sharing, set pricing territories consistent with the spatial flood risk, and finally, quantify the impact of greenhouse gas emission scenarios on individual and aggregate losses, premiums, and tail risk measures.</abstract>
<note type="statement of responsibility">Mathieu Boudreault...[Et al.]</note>
<subject>
<topic>Inundaciones</topic>
</subject>
<subject>
<topic>Desastres naturales</topic>
</subject>
<subject>
<topic>Modelos actuariales</topic>
</subject>
<subject>
<topic>Mercado de seguros</topic>
</subject>
<subject>
<topic>Riesgo financiero</topic>
</subject>
<subject>
<topic>Gerencia de riesgos</topic>
</subject>
<subject>
<topic>Riesgos de la naturaleza</topic>
</subject>
<subject>
<topic>Distribución de pérdidas</topic>
</subject>
<classification authority="">6</classification>
<relatedItem type="host">
<titleInfo>
<title>North American actuarial journal</title>
</titleInfo>
<originInfo>
<publisher>Schaumburg : Society of Actuaries, 1997-</publisher>
</originInfo>
<identifier type="issn">1092-0277</identifier>
<identifier type="local">MAP20077000239</identifier>
<part>
<text>01/06/2020 Tomo 24 Número 2 - 2020 , p. 251-274</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">200528</recordCreationDate>
<recordChangeDate encoding="iso8601">20200602122627.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20200018117</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>