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PANJER CLASS UNITED 
One formula for the probabilities of the Poisson, Binomial, and Negative 

Binomial distribution 
 

Michael Fackler1 
 
 
Abstract. This paper gives a formula representing all discrete loss 
distributions of the Panjer class (Poisson, Binomial, and Negative Binomial) 
in one. Further it provides an overview of the many Negative Binomial 
variants used by actuaries. 
 
Keywords. Panjer class, (a,b,0) class, discrete loss distribution, Negative 
Binomial 
 
Resumen. En este artículo se presenta una fórmula conjunta para las 
probabilidades de las distribuciones de la clase Panjer (Poisson, binomial, 
binomial negativa). Además se da una mirada general a las variantes de la 
distribución binomial negativa utilizadas por los actuarios. 
 
Palabras clave. Clase de Panjer, clase (a,b,0), distribución del número de 
siniestros, distribución binomial negativa 
 
 
1. Introduction 
 
The three well-known discrete loss distributions Poisson, Binomial, and 
Negative Binomial are closely related. First of all, they form the Panjer 
(a,b,0) class (see Panjer and Willmot, 1992, section 7.2; Klugman et al., 
2004, appendix B.2). Secondly, the Poisson distribution is a limiting case of 
the two other distributions, which finally have their origin in the modelling 
of Bernoulli trials. The traditional representations of the probability (mass) 
functions of the three distributions look quite different, though. 
 
In this paper we add to the unified view of these distributions by presenting a 
common formula for the probabilities, being both instructive and convenient 
for practical implementation. 
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Section 2 states classical parametrisations of the three distributions, adding a 
Binomial variant being less common but easier to compare to the other 
members of the (a,b,0) class. Section 3 provides a formula representing the 
three distributions altogether. 
 
To give some orientation in view of the confusing variety of 
parametrisations used in the actuarial world (especially for Negative 
Binomial) section 4 collects and classifies the variants most frequently found 
in the actuarial literature. 
 
 
2. Representations of the Panjer distributions 
 
In order to see how the above distributions of loss numbers N are related we 
shall first summarize: probability function (pf) pk = P(X=k), probability 
generating function (pgf) E(zN), expected value E(N), and dispersion D(N) = 
Var(N)/E(N) of the three distributions. 
 
Among the – not few – different parametrisations that can be found for the 
Panjer distributions in the literature (for a discussion see section 4) we are 
particularly interested in those using the expected value as a parameter, in 
the following denoted by λ>0. (We leave the degenerate case λ=0 aside, 
where all distributions coincide.) Note that in general insurance one often 
deals with models having λ = vθ where v is a measure of the size of the risk 
(or portfolio of risks) and θ is the loss frequency per volume unit (see e.g. 
Mack, 1999, section 1.4.2; Bühlmann and Gisler, 2005, section 4.10). For 
simplicity we will, however, always write λ. 
 
- The Poisson distribution essentially has one common representation (P), 

using the expectation as the (only) parameter. 
- For the Binomial distribution we state the classical parametrisation (B1) 

using as parameters the number of trials m and the probability of success 
p. We add another one (B2) where p is replaced by the expected value (of 
successes) λ = mp. p < 1 means λ < m. 

- For the Negative Binomial distribution we first state the classical 
parametrisation (NB1) coming from Bernoulli trials, using as parameters 
the number of successes α (originally integer-valued but extendable to all 
positive real numbers) and the probability of success p<1. Then (NB2) 
we replace p by the expectation (of failures) λ = α(1–p)/p. 
 

See the following Table: 
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It seems that the traditional representations, namely B1 and NB1, somehow 
obscure the relationship between the three distributions. If we instead look at 
B2 and NB2 at least the pgfs look very similar, and here and in the formulae 
for the dispersion there is an obvious correspondence between α and m, or 
merely –m. This well-known correspondence (see e.g. Heckman and 
Meyers, 1983, sections 3 and 5) will turn out to be the key of the common 
representation. 
 
 
3. The all-in-one formula 
 
Proposition: The formula 
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describes the probability (mass) function of all distributions of the Panjer 
(a,b,0) class. The parameter λ is the expected value, which can take on all 
positive real numbers. The parameter α can take on the following values: 
 



Panjer class united – Anales 2011/1-12 
 
 

 4

a)  α ∈ ]0; ∞[:    Negative Binomial. 
b)  α = ∞, α = – ∞:   Poisson. (1) is well defined in this infinite case as 

  the limits exist and coincide. 
c)  α ∈ ]– ∞; – λ[ ∩ Z:   Binomial. The parameter α here is restricted to 

  integers –m satisfying m > λ. 
 
The corresponding probability generating function is given by 

E(zN) = 
α

α
λ −
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⎛ −− )1(1 z ,     which again is well defined for infinite α. 

 
Definition 1: We call the above parametrisation of the (a,b,0) distributions 
Panjer United (PanU). 
 
Proof: First we convert (1) into a known pf for each of the three cases. 
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b) Recall that  lim (1+y/α)α = ey  for α → ∞ and α → – ∞, therefore the first 
factor in (1) equals e–λ. Since the third factor equals 1 we are done. 
 
c) If we set m := –α in B2 we get 
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Note that (1) is well defined and valid even for k>m. In this case the pk equal 

zero as the products ∏
−

=
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iα  contain the factor α+m=0. 

 
The pgf formula is obvious for finite α, and for infinite α the reasoning is as 
in b) with y = λ(z–1). 
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Finally, to see that we have a one-to-one correspondence of the parameters 
appearing in the usual representations of the (a,b,0) class and in the PanU 
formula we only have to check that the restrictions for negative α coincide: 
The Binomial distribution has a positive integer m being greater than λ. This 
translates to a negative integer α and to the condition –α > λ, being exactly 
case c) of the Proposition. 
 
Remark 1: Formula (1) splits the probabilitiy pk in three components: p0, a 
term completing the Poisson formula, and finally a product describing in a 
way the deviation from Poisson. The latter product shows at a glance the 
well-known fact that it is not possible to extend the parameter space to any 

further negative values for α: Its first factor 
λα

α
+
+ 0

 must be positive, 

otherwise p0 and p1 would have different sign. Hence the denominator must 
be negative, i.e. –α > λ. Now assume that α is not an integer. Then all factors 

λα
α

+
+ k

, and with them all pk, are non-zero. Thus the factors must be postive, 

otherwise pk and pk+1 would have different sign. Hence all numerators k+α  
must be negative, but this is impossible as k is unlimited. 
 
Corollary 1: In the above parametrisation the Panjer recursion reads 
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Again all formulae are well defined for infinite α. 
 
Proof: From (1) we immediately get 
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The following formulae are well-known consequences of the Panjer 
recursion (see Klugman et al., 2004, appendix B.2): 
 

E(N) = 
a
ba

−
+

1
,  Var(N) = 2)1( a

ba
−
+

,  CV2(N) = 
ba +

1
,  D(N) = 

a−1
1

. 

Plugging in   ba +  = 
λα

αλ
+

,   a−1  = 
λα

α
+

   yields the claimed results. 
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Corollary 2: In the PanU representation the n-th derivative of the 

probability generation function equals     1−
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which is again well defined for the whole PanU parameter space. 
 

Proof: From the PanU pgf formula     
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result for finite α in a straightforward manner via induction. (Note that the 
derivative formula is correct for all integers n>0, even in the Binomial case 
where for n > m = –α it equals zero.) As for the infinite case, the limit of the 
derivative formula for  α → ± ∞  equals   )1( −zneλλ ,   which is exactly the 
n-th derivative of the limit of the pgf formula. 
 
Corollary 3: All moments of the (a,b,0) distributions can be written as linear 

combinations of the terms     λn 1+
i
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defined for the whole PanU parameter space. 
 
Proof: The n-th factorial moment of a discrete loss distribution equals the 
n-th derivative of the pgf, evaluated at z=1 (see Panjer and Willmot, 1992, 
section 2.4). In the PanU representation this value is given by the above 
term. As all moments are linear combinations of the factorial moments, we 
are done. 
 
Remark 2: Corollary 3 makes clear that representations for higher moments 
coming originally from the Negative Binomial representation NB2 are 
extendable to the whole (a,b,0) class. E.g. we can state without any further 
calculation that the well-known Negative Binomial skewness formula 
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is not only valid for positive α (NB2) but for the whole PanU parameter 
space, including the cases of negative skewness for Binomial distributions 
with –α/2 < λ < –α, i.e. 0.5 < p < 1. 
 
Now we define a Panjer United variant without infinite parameter values by 
replacing the parameter α by its inverse c = 1/α. This parameter was named 
“contagion” (see e.g. Heckman and Meyers, 1983, sections 3 and 5, see 
Panjer and Willmot, 1992, sections 3.6, 6.9, and 6.11 for the description of 
the underlying stochastic processes) in order to give an intuitive meaning to 
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deviations from the Poisson distribution: A higher / lower probability of loss 
after the occurrence of a loss can be interpreted as positive / negative 
contagion of losses. Here 0 < c < ∞ is the Negative Binomial case (positive 
contagion), c = 0 corresponds to Poisson (no contagion) and negative c is the 
Binomial case (negative contagion) having the quite intricate parameter 
restriction c = –1/m with integer m > λ > 0. This parameter space is complex, 
however, maybe a bit less complex than the classical representation of the 
Panjer class in terms of a and b (see Panjer and Willmot, 1992, section 6.6). 
Furthermore the parameters λ and c, describing expectation and contagion, 
are very intuitive and, last but not least, enable the practitioner to implement 
the three distributions in a single procedure, e.g. for the purpose of 
simulation. 
 
Proposition 2 / Definition 2: The formula 
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describes the probability (mass) function of all distributions of the Panjer 
(a,b,0) class. The parameter λ is the expected value, which can take on all 
positive real numbers. The parameter c can take on the following values: 
 
a)  c ∈ ]0; ∞[:     Negative Binomial. 
b)  c = 0:   Poisson. (2) is well defined as the limit of 

  the first factor exists. 
c)  c ∈ ]–1/λ; 0[ ∩{1/z⏐z∈Z*}:   Binomial. 
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D(N) = λc+1 ,     and     E((N-E(N))3) = λ 1+ cλ( ) 1+ 2cλ( ). 
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Conclusion: The “united” representation of the three Panjer (a,b,0) 
distributions via a common probability function is both convenient for 
practical implementation and instructive as it makes clearer how closely 
related and at the same time how different the three distributions are: 
Binomial and Negative Binomial appear very similar in the PanU/PanU* 
representation but they are in a way the opposite sides of a coin, being 
connected, or rather separated, by the limiting case Poisson. 
 
 
4. The Negative Binomial world 
 
In order to give an overview we enhance Table 1 by adding several variants 
of the Negative Binomial distribution, all being useful in certain areas but 
partly tricky to convert into each other. We start from the table provided by 
Mack (1999, section 1.4.2) showing essentially three different ways of 
interpreting the distribution, all using α but having different second 
parameters: 
 
- Bernoulli trial with probability p: NB1 
- Expectation λ: NB2 (see also Johnson et al., (2005, section 5.1) who 

dedicate their whole chapter 5 to the Negative Binomial distribution) 
- Poisson-Gamma: If the parameter of a Poisson distribution is Gamma 

distributed with density )(1 αβ βαα Γ−− xex  then the mixed distribution 
is a variant NB3 inheriting the parameters α and β from the Gamma 
distribution (see also e.g. Bühlmann and Gisler, 2005, section 2.4). 

 
However, actuaries found two more useful second parameters, closely 
related to (and easy to confuse with) NB1 and NB3, respectively: 
 
- There is a close variant NB1b of the Bernoulli trial using the 

complementary probability q=1–p (see e.g. Johnson et al., 2005, section 
5.1).  
As q equals the Panjer recursion parameter a this can also be seen as a 
representation with this parameter of the Panjer recursion. The latter 
interpretation is by the way extendable to the Binomial case (see Schröter 
(1990, section 4, Proposition 1) showing this for an extension of the 
(a,b,0) class). 

- There is a Poisson-Gamma variant NB4 using ξ=1/β according to an 
alternative definition of the Gamma density having parameters α and the 
inverse of β (see Klugman et al., 2004, section 4.6.3).  
The same representation comes about from a totally different approach 
(see Johnson et al., 2005, section 5.1) – by applying the generalized 
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binomial theorem (for real-valued exponents) to     1 = ( )( ) αξξ −−+1  =  
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Remark: In this paper we have restricted ourselves to parametrisations 
using α or the inverse c. For completeness we mention two further 
representations (see Johnson et al., 2005, section 5.1) combining the 
expectation with one of the above second parameters: 

- NB2/1b:  λ together with q yields the pgf     
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- NB2/4:  λ together with ξ yields the pgf     ( ) ξλξ −−− )1(1 z  
 
The conversion of the parameters is as follows: 
 

p   =  q−1   =  
λα

α
+

  =  
β

β
+1

  =  
ξ+1

1
, 

q   =  p−1   =  
λα

λ
+

  =  
β+1

1
  =  

ξ
ξ
+1

, 

λ   =  
p

p)1( −α
  =  

q
q

−1
α

  =  
β
α

  =  αξ , 

β   =  
p

p
−1

  =  11
−

q
  =  

λ
α

  =  
ξ
1

,  

ξ   =  11
−

p
  =  

q
q
−1

  =  
α
λ

  =  
β
1

. 

 
Table 2 shows 10 distributions (1 Poisson, 2 Binomial, 5 Negative Binomial, 
and the 2 all-in-one representations) providing for each: probability function, 
probability generating function, probability of no losses, expectation, 
variance, squared coefficient of variation, dispersion, and at last the 
parameters a and b of the Panjer recursion. 
 
The table makes clear that for any of these Negative Binomial 
representations there is something it describes better (in a simpler way) than 
the other variants do – but in contrast it has more intricate formulae for other 
quantities that could be of interest. It seems that there is no “best” 
parametrisation for all actuarial needs, which arguably is why so many 
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different ones have been established. However, NB2, apart from the possible 
extension to the whole (a,b,0) class shown in this paper, has further 
advantages: It involves the expected value λ, being in practice the quantity of 
main interest (being indeed often seen as even more important than the 
specification of the most adequate model). The second parameter α shows 
how much the distribution deviates from the popular Poisson model. Finally 
(see Panjer and Willmot, 1992, section 9.8) the Maximum Likelihood 
estimators for these two parameters are independent, which is not the case 
for some other parametrisations. 
 
As the coexistence of so many – partly very similar – parametrisations is a 
persistent source of errors and misunderstandings, it might possibly be a 
good idea to agree, at least for educational purposes, on a standard among 
actuaries, e.g. consistent names for the variants. 
 
 
References 
 
Bühlmann, H. and Gisler, A., 2005. A course in Credibility theory and its 
applications. Springer, Berlin Heidelberg. 
Heckman, P.E. and Meyers, G.G., 1983. The calculation of aggregate loss 
distributions from claim severity and claim count distributions. PCAS,  LXX, 
22-61. 
Johnson, N.L., Kemp, A.W., and Kotz, S., 2005. Univariate discrete 
distributions. Wiley, Hoboken NJ. 
Klugman, S.A., Panjer, H.H., and Willmot, G.E., 2004. Loss models. From 
data to decisions. Wiley, Hoboken NJ. 
Mack, T., 1999. Schadenversicherungsmathematik. Verlag 
Versicherungswirtschaft, Karlsruhe. 
Panjer, H.H. and Willmot, G.E., 1992. Insurance risk models. Society of 
Actuaries, Schaumburg IL. 
Schröter, K.J., 1990. On a Family of Counting Distributions and Recursions 
for Related Compound Distributions. Scand Actuarial J, 1990, 161-175. 
 



Michael Fackler – Ananles 2011/1-12 

 11

 



Panjer class united – Anales 2011/1-12 
 
 

 12

 


