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Abstract
We analyze the newly introduced German occupational pension scheme called target 
pension (“Zielrente”), which links the beneficiaries’ benefits during the retirement 
phase to the mortality experienced among the pension beneficiaries and the perfor‑
mance of the financial market, from a pension beneficiary’s perspective. We model 
the contract payoffs related to the target pension according to the new enhancement 
law on German occupational law. Specifically, we include two parameters in the 
plan design, one to control the surplus participation and one to control the loss par‑
ticipation. These parameters are chosen in such a way that the initial wealth of the 
retiree equals the initial value of the target pension. With the help of expected life‑
time utility and wealth equivalent, we find that the target pension provides a mean‑
ingful supplement to the first and third pillar. Further, we find some comparative 
advantages of the target pension over the traditional pure defined benefit and some 
defined contribution plans from a policyholder’s point of view. Our analysis with 
reasonable parameter choices shows that target pension plans can be outperformed 
by defined contribution plans with variable annuities, while the latter are accompa‑
nied by a considerably higher ruin probability.
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1  Introduction

One of the major societal challenges is the changing demographics due to our aging 
society. While birth rates remain low, life expectancy has been increasing continu‑
ously for several decades, leading to high costs for social security systems. A shrink‑
ing working population has to support pensions of an increasing retiring popula‑
tion, which destroys an effective functioning of the statutory pay-as-you-go system. 
At the same time due to current low interest and highly volatile stock markets, it 
becomes more difficult to build up capital reliably over long time horizons. How to 
provide pension security and how to deal with an aging society is a very challenging 
task in contemporary social security, both in developed industrial and developing 
countries. Diverse measures have been taken to provide better pension security. In 
Germany, the role of occupational and private pension plans, the second and third 
pillar of the pension system, has been substantially enhanced. According to the new 
law of occupational pension plans (Betriebsrentenstärkungsgesetz), a new occupa‑
tional pension plan, so called target pension (“Zielrente”, TP), was introduced and 
implemented in 2018. Due to the complexity of the pension system, it is not easy to 
come up with a thorough solution which solves all the problems resulting from the 
demographic changes.

In the majority of developed countries, defined contribution (DC) and defined 
benefit (DB) pension schemes are still the two main types of occupational retirement 
plans ([13]). In DC schemes, employers and their employees make payments to a 
pension fund which invests the contributions in the financial market. The benefits at 
retirement are highly dependent on the performance of the investment returns expe‑
rienced during the membership, i.e. the employee carries the investment risk. In a 
DB scheme, employers promise their employees a guaranteed pension payment and 
carry the investment risk. From the year 2000 on, there has been a shift from DB 
towards DC schemes in the majority of developed countries ([13]). [1] provide a 
discussion of further causes responsible for this shift. For further details on DB and 
DC schemes, see also [14] and for DB schemes see additionally [2]. An overview of 
stochastic methods for analyzing pensions can be found in [6]. [3] compare occupa‑
tional pension schemes to private life annuities. Further articles connected with the 
design and development of pension schemes include, but are not limited to [15, 16, 
8] and [11].

Although the new pension scheme TP is technically not the same as a pure DC 
scheme1, it is the first occupational pension scheme in Germany that does not offer 
any guaranteed benefits to the policyholders. This feature has created a lot of skep‑
ticism in the German population. The question arises whether the new scheme is 
beneficial to the employees, whether the newly introduced scheme can be a mean‑
ingful supplement to the first and third pillar, and whether the TP is better than pure 
DB or pure DC plans for the pension beneficiaries. This article aims to answer this 

1  In the media, it is called pure DC. However, the actual description of the TP in German law makes it 
differ from a pure DC scheme.
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question by analyzing the benefits of a TP in an expected utility framework assum‑
ing no bequest motive.

Following the new enhancement law on occupational pensions, the TP contains 
a collective risk sharing scheme: The retirement benefits are adjusted on a yearly 
basis, based on the performance of the financial market and the mortality experi‑
enced among the members in the pension plan. After each year, the pension benefits 
can increase, decrease or remain the same as in the previous year. To control the 
magnitude of the increase and reduction in the pension benefits, we introduce a sur‑
plus participation and a loss participation parameter. We rely on risk-neutral pricing 
techniques to determine the initial value of the TP for a fixed up-front premium of 
the retiree. The surplus and loss participation parameters are determined in such a 
way that financial fairness is achieved.

We assume that the retiree has access to all three pillars with a pay-as-you-go first 
pillar, occupational pensions as a second pillar, and private pensions as a third pil‑
lar. In this paper, for simplicity, we assume that the pension payments each retiree 
obtains from the first and third pillar are merged to a constant whole-life annuity. 
In this article, there are two objectives: (1) We want to find out whether a TP can 
be a meaningful supplement to the first and third pillar, and (2) whether the TP can 
bring some added value within the second pillar, especially compared to the DC 
and DB scheme. To answer these questions, we assume that the retiree splits her 
initial wealth between some occupational pension scheme and a constant annuity 
resulting from the first and third pillar. The wealth is split in such a way that her 
expected discounted lifetime utility is maximized. If the TP then generates a higher 
level of expected utility than an alternative occupational pension scheme, the TP is 
superior to this alternative. First, we perform these analyses in a rather simple model 
where we disregard systematic mortality risk. We then check the results obtained 
for robustness by additionally considering a model setup which takes the systematic 
mortality risk and safety loadings into account. To assess the added value which 
an individual gains by joining a TP scheme, we consider the wealth equivalent 
derived from the expected utility, which is the initial wealth level required for a TP 
to achieve the same expected utility level as some other pension scheme with some 
fixed initial wealth level.

In both model frameworks, we find that individuals with different degrees of rela‑
tive risk aversion invest positive fractions of their wealth in a TP, suggesting that the 
TP forms a meaningful supplement to the first and third pillar. The more risk-averse 
a retiree is, the lower the optimal fraction of wealth invested in the TP becomes, as 
retirees with a higher risk aversion desire more stable payments during the retire‑
ment phase. Furthermore, our results suggest that a TP is likely to be a more benefi‑
cial occupational pension scheme than some DC and DB schemes, as the resulting 
wealth equivalents are below the initial wealth invested in the DC and DB schemes. 
However, we also find DC plans with variable annuities which make the wealth 
equivalent higher than the initial wealth invested in the DC scheme. The disadvan‑
tage of this DC structure is, though, that it leads to a default with certainty, whereas 
the TP provides ruin probabilities near zero under reasonable parameter choices. 
Under the more realistic model which takes account of the systematic mortality 
risk, the qualitative results remain widely similar to the case with no systematic 
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mortality risk. For the majority of investors, the inclusion of risk loading in this set‑
ting can lead to an even higher attractiveness of the TP scheme over some DC and 
DB schemes under a prudent investment strategy, whereas more risky investment 
strategies underlying the TP lower its attractiveness compared to the setting with 
no loadings. Again, DC plans with variable annuities we analyze outperform the TP 
but lead again to a certain default in contrast to the TP under reasonable parameter 
choices.

The remainder of this article is organized as follows: In Sect. 2, we describe the 
fundamental model setup used throughout the article. In particular, we describe how 
the preferences of the retirees are modeled, the financial market, the structure and 
design of the TP pension plan and the valuation of it. In Sect. 3, we disregard sys‑
tematic longevity risk and determine the optimal fraction of wealth invested in each 
occupational pension scheme, and determine the wealth equivalent of the TP for the 
DB and two DC plans. In Sect. 4, we include the systematic mortality risk and per‑
form similar analyses as in Sect. 3. Section 5 concludes the article.

2 � Model setup

Consider a retiree who is currently x years old and has a total initial wealth of x0 . 
The future lifetime of the retiree is denoted by � which is assumed to be independent 
of the financial market risk.

2.1 � Stochastic model

The TP has a collective risk sharing component: The individual payments from the 
TP depend on the number of surviving pension beneficiaries as well as on the per‑
formance of the financial market. We assume that there are in total n retirees who 
can be seen as identical copies of each other. Each of the retirees contributes  the 
same initial wealth x0 to the collective, resulting in a collective initial wealth level of 
X0 = nx0.

We consider a stochastic basis ( Ω,F, {Ft}t≥0,P ) satisfying the usual hypothesis. 
Let {Wt}t≥0 be a standard Brownian motion. There are two assets traded in the mar‑
ket, a risky asset S following a geometric Brownian motion and a risk-free asset B 
earning a constant interest rate r:

Here we assume that 𝜇 − r > 0 and 𝜎 > 0 . Assuming that the pension beneficiaries’ 
future lifetimes are independent, the number of living pension beneficiaries at time 
t is given by Nt ∼ Bin(n, tpx) . In the following, we assume that the filtration {Ft}t≥0 
is defined by Ft = �(Ht ∪ Gt) , where Gt = �{Ns, s ≤ t} and the filtration {Ht}t≥0 is 
the standard filtration of the standard Brownian motion {Wt}t≥0 . That is, the filtra‑
tion {Ft}t≥0 contains all the relevant information about the payoff of the TP: {Gt}t≥0 

dSt = �Stdt + �StdWt, S0 = s

dBt = rBtdt,B0 = 1.
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contains the information about the deaths occurring over time and {Ht}t≥0 contains 
the information about the stock price.

2.2 � Expected utility

Assume that the retiree is situated in a three-pillar pension system with a pay-as-
you-go first pillar, an occupational pension as a second pillar, and a private pension 
as a third pillar. The main purpose of the paper is to find out whether the second pil‑
lar is a meaningful supplement to the first and third pillar, and whether the specific 
form of TP as the second pillar brings some added value compared to the traditional 
pure DB and pure DC pension plans. Typically, the pension obtained from the first 
pillar is annuity-like, i.e. a fixed periodic whole-life payment. Concerning the third 
pillar, the retiree can voluntarily access the life and pension, stock market or real 
estate market etc. to ensure supplementary provisions for their old age. In this paper, 
for simplicity, we assume that the pension payments each retiree obtains from the 
first and third pillar are merged to a constant whole-life annuity.2 The up-front pre‑
mium of this annuity constitutes a 1 − � fraction of the retiree’s initial wealth x0 , 
where � ∈ [0, 1] . The remaining wealth �x0 is used to purchase the occupational 
pension plan. Note that if we want to emphasize that that the pension from the first 
pillar is statutory and the retiree is ensured with at least this part of pension, we 
shall adjust the upper bound of � from 1 to 0 ≤ 𝜙̄ < 1 . For our analysis below, this 
can be incorporated straightforwardly. However, as the level 𝜙̄ can vary substantially 
for different persons, we stick to the case with � ∈ [0, 1] . Let us use L to denote the 
periodic annuity payment if x0 is fully used to purchase the annuity, and {Lk}k=0,1,… 
be the periodic payment from investing in the occupational pension plan if x0 is fully 
used to invest in the second pillar. In other words, the retiree who invests (1 − �)x0 in 
the annuity and �x0 in the second pillar as described above, obtains �Lk + (1 − �)L 
at k = 0, 1,… , if she is alive.

The retiree measures utility by using a constant relative risk aversion (CRRA) 
utility function given by u(y) = y1−�

1−�
 , where 𝛾 > 0 , � ≠ 1 is the coefficient of relative 

risk aversion. Consequently, the expected lifetime utility is given by

(1)

U
(
{𝜙Lk + (1 − 𝜙)L}k=0,1,…

)
= �

[
∞∑
k=0

e−𝜌k�{𝜁>k}u(𝜙Lk + (1 − 𝜙)L)

]

=

∞∑
k=0

e−𝜌k�
[
�{𝜁>k}u(𝜙Lk + (1 − 𝜙)L)

]

=

∞∑
k=0

e−𝜌k ⋅ kpx ⋅ �
[
u(𝜙Lk + (1 − 𝜙)L) ∣ 𝜁 > k

]

2  A more complex and realistic modelling of the third pillar is per se possible. However, due to the com‑
plexity of the TP, it will be much more difficult to draw a clear conclusion from the TP, if the third pillar 
is modelled in a complicated way.



	 A. Chen, M. Rach 

1 3

where we have used the usual actuarial notation P(𝜁 > k) = kpx and � is the subjec‑
tive discount factor of the retiree. We assume that the policyholder determines � in 
such a way that the expected lifetime utility (1) is maximized.

•	 If we can find a 𝜙 > 0 that delivers a higher expected lifetime utility than that of 
� = 0 (constant annuity), the second pillar provides a beneficial supplementary 
retirement plan in addition to constant annuities. Note that the expected lifetime 
utility of a constant annuity can be determined explicitly: 

•	 Note that the aggregate periodic pension payments are identical for two cases: 
� = 0 and Lk = L for all k. The latter case can result from a fixed annuity pay‑
ment from the first and third pillar together with a DB plan which also pays out 
a fixed payment. In this sense, if 𝜙 > 0 turns out optimal for Lk unequal to L for 
at least one k, we show that a DB pension plan is outperformed by other occupa‑
tional plans.

•	 Given 𝜙 > 0 , we can compare various occupational pension plans by specifying 
and analyzing concrete payment streams for Lk.

As the emphasis of the paper is laid on analyzing the newly developed occupational 
pension plan TP in Germany, we will specify Lk to meet the descriptions of the TP 
stipulated in the enhancement law on occupational pensions in the remainder of this 
section and subsequently in the numerical section compare it with alternative pen‑
sion schemes.

2.3 � Payoff mechanism of TP

Below we describe the payoff mechanism of a TP. In the following, we consider a 
run-off scheme, i.e. we assume that there is a finite number of initial members and 
that no new members will enter the system in the future.

•	 Annuity payments of in total NkLk to the survivors at time k occur annually in 
advance, that is, at times k = 0, 1, 2,… . As we assume that the retirees are identi‑
cal copies of each other, they all receive the same annual annuity benefit.

•	 After the annuity payments are subtracted from the account, the remainder is 
invested in financial assets. Within one year, the total assets are assumed to 
develop according to the following stochastic differential equation (SDE) under 
P: 

U({L}k=0,1,…) = �

[
∞∑
k=0

e−𝜌k�{𝜁>k}u(L)

]

= u(L)

∞∑
k=0

e−𝜌kkpx =∶ u(L)äx(𝜌).

(2)dXt = (r + �(� − r))Xtdt + ��XtdWt , t ∈ [k, k + 1] ,
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 where � is the fraction of the account value invested in the risky asset, i.e. the 
asset strategy is a constant mix strategy, and the initial investment is given by 
X�
0
= X0 − nL0 . The solution to the above SDE is given by 

 for t ∈ [k, k + 1] . As long as Xt > 0 , the TP can provide payments to the benefi‑
ciaries. If Xt = 0 for some t, no further payments can be made and the account 
value remains at zero. In case of a TP, the pension beneficiaries do not obtain a 
guaranteed payment as in a DB plan, i.e. no protection is provided by the pension 
guarantee fund, when the sponsoring company or the pension fund defaults. In 
other words, we assume that the TP has a limited liability, and it does not pay out 
more than the fund’s asset value. That is why Xt cannot be negative.

•	 At the end of each year, we determine the funding ratio which indicates the ratio 
between the available assets and the future pension liabilities. Mathematically 
spoken, it is given by 

 where äx+k(r) =
∑∞

j=0 jpx+k ⋅ v
j is the present value of a lifelong annuity-due with 

v = e−r being the annual discount factor.
•	 According to the enhancement law on occupational pensions, the pension pay‑

ments of the TP shall be adjusted according to the realization of the funding 
ratio. If the funding ratio falls out of the interval [1, 1.25], the annuity payments 
Lk shall be adjusted. To be precise, let Nt be the number of the survivors at time 
t.

–	 L0 = X0∕(näx(r)) , i.e. the funding ratio F0 at time 0 equals 1.
–	 At time 0, the first pension payment is made. The remainder X�

0
= X0 − nL0 is 

invested in financial assets and evolves according to (2) which delivers X1.
–	 The second individual pension payment R1 is based on the funding ratio 

F1 = X1∕(N1L0äx+1(r)) at time 1 : 

 If the fund performs extremely well ( F1 > 1.25 ), some surpluses are given to 
the retirees in the second case. If the fund performs extremely badly ( F1 < 1 ), 
the pension payment will be cut. Both � and � are in (0, 1). In a good perfor‑
mance, some reserves are set up. In a bad performance, not all the deficits are 
covered by the retiree. After the annuity payments are made, the remainder 
X�
1
= X1 − N1L1 is invested in financial assets.

–	 The k-th individual pension payment Lk is based on the funding ratio at time k 
which is given by Fk = Xk∕(NkLk−1äx+k(r)) : 

(3)Xt = Xk exp

((
r + �(� − r) −

�2�2

2

)
(t − k) + ��(Wt −Wk)

)

Fk =
Assetsk

Liabilitiesk
=

Xk

Nk Lk−1 äx+k(r)
,

L1 =

⎧⎪⎨⎪⎩

L0, if F1 ∈ [1, 1.25]

L0 +
𝛼

n
(X1 − N1L0äx+1(r)), if F1 > 1.25

max
�
L0 +

𝛽

n
(X1 − N1L0äx+1(r)), 0

�
, if F1 > 1.25
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 In the second case, some surpluses are given to the retirees. In the third case, 
the pension payment will be cut. If Lk = 0 for some k in (4), one final pay‑
ment of Lk ∶= Xk∕Nk is made to each retiree who is still alive at time k. After 
that, the account value is zero and, consequently, no further retirement ben‑
efits can be paid out. If Lk > 0 in (4), after the annuity payments are made, the 
remainder X�

k
= Xk − NkLk is invested in financial assets.

To achieve fairness (see subsequent subsection), we assume additionally that the TP 
pays out a death benefit in case no living policyholders remain but the assets are not 
yet depleted. For a given t, the death benefit is zero if there are still some policyhold‑
ers alive. In this sense, we shall note that this event that all the policyholders pass 
away plays a negligible role in a large portfolio, which is e.g. the case in our numeri‑
cal analyses. In addition to the survival benefits Lk , we assume that the remainder 
is split equally among all the policyholders. We define T ∶= inf{k ∈ ℕ ∣ Nk = 0} as 
the first time when there are no policyholders left. This leads to the following payoff 
structure:

Note that we assume that the death benefit does not contribute to the policyholder’s 
expected lifetime utility (1). Since the death benefit is zero with positive probabil‑
ity, we have decided not to include it in the expected utility of the policyholder, 
since a payoff potentially equal to zero would turn the overall expected utility equal 
to −∞ for 𝛾 > 1 , which does not allow us to analyze the real retirement benefits 
generated by the TP to the pension beneficiaries. We could restrict our analysis to 
� ∈ (0, 1) , where the mentioned problem does not appear. However, we believe it 
is more important to study the impact of the risk aversion where more realistic risk 
aversion levels larger than 1 can be chosen as well. An alternative approach would 
also be to use a different type of utility function for the death benefit, which does 
not lead to a utility level of −∞ . However, in this case, we would be adding two dif‑
ferent types of utility functions which would lead to inconsistent results. Therefore, 
we have decided to compare the different retirement plans considered in Section 3 
solely based on their corresponding survival benefits.

2.4 � Valuation of TP

The question is how to set the parameters � and � , where � can be considered as 
a surplus participation coefficient, while � as a loss participation coefficient. A 
contract is fair for a policyholder if the initial market value of the contract payoff 
equates her initial investment.

(4)Lk =

⎧
⎪⎨⎪⎩

Lk−1, if Fk ∈ [1, 1.25]

k−1 +
𝛼

n
(Xk − NkLk−1äx+k(r)), if Fk > 1.25

ax
�
Lk−1 +

𝛽

n
(Xk − NkLk−1äx+k(r)), 0

�
, if Fk < 1

Z(k) = Lk�{𝜁>k} +
XT

n
�{T=k}.
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To address the fair contract, we shall determine the initial market value of the TP. 
We rely on the risk-neutral pricing technique. The insurer chooses, for pricing purposes, 
a risk neutral probability Q among the infinitely many risk-neutral measures existing in 
incomplete arbitrage-free markets. The probability Q then accounts for both diversifi‑
able and systematic mortality risk inherent to this portfolio. The financial uncertainty in 
our model is only due to assets randomness. In this benchmark setting, we first assume 
that no systemic mortality risk is existent and the portfolio is sufficiently large so that 
the unsystematic risk can be neglected, i.e.

We start with this simple setting as we want to single out the effect of the systematic 
mortality risk by adding it explicitly in a later section. Beyond the natural require‑
ment that financial and demographic risk are independent, we assume the dynamics 
of the stock market under Q to be given by

To determine the initial value of the TP, we first note that the event {T = k} is for all 
k ∈ ℕ equivalent to the event {Nk ≤ 0 < Nk−1} . Further, note that

According to the fair contract principle and using (6), we obtain the fair value 
V0 = V0({Lk}k=0,1,…) as

(5)P(𝜁 > k) = Q(𝜁 > k).

dSt = St

(
rdt + �dW

Q
t

)
, t ≥ 0.

(6)

P(Nk ≤ 0 < Nk−1) = P(Nk−1 > 0) − P(Nk > 0)

= 1 − P(Nk−1 ≤ 0) − (1 − P(Nk ≤ 0))

= 1 − (1 − k−1px)
n − (1 − (1 − kpx)

n)

= (1 − kpx)
n − (1 − k−1px)

n.

(7)

V0 = �Q

[
∞∑
k=0

(
�{𝜁>k}v

kLk + vk ⋅
Xk

n
�{T=k}

)]

=

∞∑
k=0

(
vk�Q

[
�{𝜁>k}Lk

]
+

vk

n
P(T = k)�Q

[
Xk ∣ T = k

])

=

∞∑
k=0

(
kpx v

k
�Q

[
Lk ∣ 𝜁 > k

]

+
vk

n

(
(1 − kpx)

n − (1 − k−1px)
n
)
�Q

[
Xk ∣ T = k

])

=

∞∑
k=0

kpx v
k
�Q

[
Lk ∣ 𝜁 > k

]

+

∞∑
k=1

(
vk

n

(
(1 − kpx)

n − (1 − k−1px)
n
)
�Q

[
Xk ∣ T = k

])

= x0.
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3 � Analyzing the utility of TP

In this section, we first aim to assess whether the addition of an occupational pen‑
sion plan is beneficial to a single policyholder, with the aid of TP. Further, we com‑
pare the TP with pure DB and DC pension plans.

Table 1 provides the parameter setup for our numerical analyses. Below are a few 
remarks regarding our base case parameters:

•	 For our numerical analyses, we have chosen the Gompertz law to describe the 
force of mortality, due to its reputation for being the best description of senior 
population’s future lifetimes (see e.g. [7, 12] and [10]). In this section, we con‑
sider an actuarially fair pricing framework, and adopt the parameters calibrated 
to real-world data directly from [10]. Later in Sect. 4, when we explicitly con‑
sider safety loadings, we calibrate the Gompertz parameters to DAV 2004R life 
table which is used in Germany to price retirement products. That is to say, we 

assume that tpx = e
e
x−m
b

(
1−e

t
b

)
 with modal age at death m and dispersion coef‑

ficient b. The parameters are taken from [10], where the parameters for Germans 
are estimated as m = 88.12 , b = 9.09 for females and m = 83.57 , b = 9.90 for 
males. Hence, our study focuses on the perspective of a female retiree, but could 
of course be changed to the male perspective without drastic changes in the 
results.3

•	 The maximum age is 122 which is based on the publicly available German life 
table DAV 2004R which assumes 121 as maximum age.

•	 The retiree is aged 67 (which is the current typical retirement age in Germany) 
and the continuous risk-free interest rate is r = 1% based on [17].

•	 The constant-mix investment strategy � = 0.2 is more realistic for the situation 
in Germany. German insurance companies and pension funds are not allowed to 
invest more than a (rather low) prescribed percentage of their capital in risky 
assets. The higher fraction 0.6 could be applicable to the United States or Swit‑
zerland, where less conservative bounds are prescribed.

We start our numerical analysis in Tables 2 and 3 by giving some insights on the 
behavior of the initial value V0 depending on � and � for two investment strategies 
� ∈ {0.2, 0.6}.

Table 1   Base case parameters

x0 n � r � � x m b � �

100 1000 0.07 0.01 0.2 ∈ {0.2, 0.6} 67 88.12 9.09 122 0.01

3  For the actuarial aspect, gender information shall be taken into consideration when analyzing the insur‑
ance companies’ data, despite the ban on the gender discrimination implemented since December 2012, 
see e.g. [5].
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We observe the following:

•	 We see that an increase in � has no monotone effect on the initial value, but does 
decrease the initial value once it exceeds the value 0.4. The reason for this is that 
a higher � leads to more surpluses being distributed to the policyholders, leaving 
less capital to be invested in the capital market to build reserves for the future.

•	 We observe that � has no monotone effect on the initial value. Instead, its effects 
strongly depend on the choice of the surplus participation �.

•	 Most importantly, we observe that the condition (7) is approximately, e.g. to 
the nearest whole number, fulfilled for many combinations of � and � . Among 
these, we choose the combination which delivers the lowest ruin probability,4 i.e. 
� = 0.05 and � = 0.4 , as we will see in Sect. 3.3. Note that, as the pension pay‑
ments are proportional to the initial investment x0 , the resulting � and � sets are 
also approximately fair, when another initial wealth level is applied.

3.1 � Comparison of TP and DB

In this section, we want to compare the optimal TP to the DB scheme. To com‑
pare the resulting utility level of the TP to that of a conventional annuity with con‑
stant annual payments, we consider the wealth equivalent, which is the initial wealth 
level WE invested in the optimal TP which makes the retiree indifferent between 
the TP and DB scheme, where the initial value of the DB scheme is given by x0 . Let 
U
(
{�Lk + (1 − �)L}k=0,1,…

)
 be the expected utility resulting from a TP with initial 

wealth x0 as given in (1), and let U
(
{L}k=0,1,…

)
 be the expected utility resulting from 

the DB scheme with initial wealth x0 . As the payments of the TP and the constant 

Table 2   Initial value V0 
depending on the two 
parameters � and �

The parameters are chosen as in Table 1 with � = 0.2

V0 � = 0.05 � = 0.4 � = 0.8

� = 0.05 99.90 99.93 99.95
� = 0.4 99.62 99.99 99.99
� = 0.8 99.15 99.70 93.67

Table 3   Initial value V0 
depending on the two 
parameters � and �

The parameters are chosen as in Table 1 with � = 0.6

V0 � = 0.05 � = 0.4 � = 0.8

� = 0.05 99.65 99.94 99.97
� = 0.4 99.36 99.98 99.99
� = 0.8 99.08 91.17 91.88

4  In Sect. 3.3, the mathematical definition of the ruin probability can be found.
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annuity are proportional to the initial wealth level, we obtain the wealth equivalent 
mathematically as

In the first equation, we need to add 
(

WE

x0

)1−�

 to change the pension payoffs starting 
from x0 to WE, as {�Lk + (1 − �)L}k=0,1,… is originally defined for a stream of pay‑
offs starting with an initial wealth x0.

In Table 4, we provide the optimal fraction � invested in the TP, and the wealth 
equivalent defined in (8), in dependence of the risk aversion � . If the wealth equiva‑
lent is greater (smaller) than the initial wealth WE > (<)x0 , then the DB scheme 
is more (less) beneficial than the TP. Note that the initial wealth for the DB plan is 
equal to x0 = 100 , (WE − 100)∕100 can be considered as the percentage of initial 
wealth which is additionally required if (WE − 100)∕100 > 0 , or may be taken away 
from the investment in the TP if (WE − 100)∕100 < 0 , to achieve the same expected 
utility as in the DB scheme.

We observe that the wealth equivalent is lower than 100 which implies that the 
TP is more beneficial than a pure constant annuity. The wealth equivalent is increas‑
ing in the risk aversion, meaning that the TP is more beneficial the less risk-averse 
an individual is. The optimal fraction of wealth invested in the TP is larger than zero 
for all risk aversion parameters and decreases in the risk aversion. For the lowest 
risk aversion � = 0.5 , the policyholder even invests all of her initial wealth in the TP 
and nothing in the annuity. These results suggest that a TP can be a beneficial sup‑
plement to constant annuities. The reason for this is that, through its collective risk 
sharing component and the returns earned through the risky asset (which are higher 
than the risk-free interest rate), the TP offers more upside potential than a constant 
annuity to the policyholders. In this place, the investment strategy � does not seem 
to play a major role in the attractiveness of the TP, since the individuals can adjust 

(8)

(
WE

x0

)1−�

U
(
{�Lk + (1 − �)L}k=0,1,…

)
= U

(
{L}k=0,1,…

)

⇔ WE = x0

(
U
(
{L}k=0,1,…

)

U
(
{�Lk + (1 − �)L}k=0,1,…

)
) 1

1−�

.

Table 4   Wealth equivalent 
along with the optimal fraction 
of initial wealth invested in the 
TP compared to the DB scheme 
( � = 0 ) depending on the 
relative risk aversion parameter

The parameters are taken from Table 1

� � = 0.2 � = 0.6

WE �∗ WE �∗

0.5 90.85 1 79.70 0.945
2 93.77 0.985 93.67 0.365
4 96.50 0.72 96.89 0.18
6 97.67 0.485 97.94 0.12
8 98.26 0.365 98.46 0.09
10 98.62 0.29 98.77 0.07
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the fraction of wealth invested in the TP accordingly. Riskier strategies lead to lower 
fractions of wealth invested in the TP. Only the retiree with the lowest risk aversion 
� = 0.5 benefits significantly from a more risky investment strategy. For all the other 
risk aversions, the wealth equivalent changes only negligibly.

3.2 � Comparison of TP and DC

As already pointed out in the model section, 𝜙 > 0 implies also that the TP is more 
beneficial to the retiree than a pure DB pension plan. In what follows, we will com‑
pare the TP with a pure DC pension plan. As mentioned in the introduction of this 
article, a DC scheme pays out the accumulated earnings of the contributions paid 
during the pre-retirement phase. Typically, this payoff can be paid as a lump sum 
payment or converted to an annuity. In the latter case, if it deals with a constant 
annuity, the DC scheme would simply be equal to the DB scheme. That is why we 
focus on two cases: In the first one, the retiree consumes the whole benefit received 
from the DC scheme at time 0. In the second case, the DC scheme pays out variable 
annuity payments resulting from an investment in the financial market. The magni‑
tude of the lump sum payment is set in such a way that the initial value of the overall 
payments is equal to x0 . In other words, the retiree simply sets aside a fraction of 
her initial wealth �x0 which is immediately consumed while the remainder (1 − �)x0 
is invested in the first and third pillar yielding a constant annuity. This leads to a 
payment stream of �x0 + (1 − �)L at time 0 and (1 − �)L at all times k ≥ 1 . The 
expected discounted lifetime utility is given by

following the standard actuarial notation.5 In this case, the optimal fraction of wealth 
invested in the DC scheme � can be determined explicitly. Consider the following 
optimization problem:

The first-order condition yields the optimal fraction of wealth set aside:

U(𝜙x0 + (1 − 𝜙)L, L, L,…)

= �

[
u(𝜙x0 + (1 − 𝜙)L) +

∞∑
k=1

e−𝜌k�{𝜁>k}u((1 − 𝜙)L)

]

= u(𝜙x0 + (1 − 𝜙)L) + u((1 − 𝜙)L)

∞∑
k=1

e−𝜌kkpx

= u(𝜙x0 + (1 − 𝜙)L) + u((1 − 𝜙)L)ax(𝜌),

max
�∈[0,1]

u(�(x0 − L) + L) + u((1 − �)L)ax(�).

5  In particular, we use ä
x
(r) to denote the present value of an annuity with annual payments of 1 made at 

the beginning of each year and a
x
(r) to denote the present value of an annuity with annual payments of 

1 made at the end of each year assuming a risk-free interest rate of r. Note that it holds ä
x
(r) = a

x
(r) + 1.
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where we have used x0 − L = Läx(r) − L = Lax(r) in the last equation. There are 
three different cases for �∗:

•	 � = r : In this case, ax(�)
−

1

� = ax(r)
−

1

� and thus �∗ = 0 , i.e. it is optimal to annu‑
itize all the initial wealth. This result is well-known since [18].

•	 𝜌 > r : In this case, ax(𝜌)
−

1

𝛾 > ax(r)
−

1

𝛾 and thus 𝜙∗ > 0 . If early consumption is 
preferred, i.e. the subjective discount rate exceeds the risk-free interest rate, an 
advantage can result by immediately consuming some wealth.

•	 𝜌 < r : In this case, ax(𝜌)
−

1

𝛾 < ax(r)
−

1

𝛾 and thus 𝜙∗ < 0 which we do not allow. 
In this case, the minimal � that can be chosen is simply 0. If later consumption 
is preferred, i.e. the subjective discount rate is exceeded by the risk-free interest 
rate, it is thus again optimal to annuitize all the initial wealth.

It is already mentioned in [18] that the optimal consumption is increasing if the sub‑
jective discount rate is smaller than the risk-free interest rate and decreasing if the 
subjective discount rate exceeds the risk-free interest rate. Furthermore, it is well-
known that constant annuities are suboptimal for individuals whose subjective dis‑
count factor differs from that of the insurer (cf. [19]), which is why the above results 
are rather natural. In our base case, we have chosen � = r , i.e. in this case no wealth 
from the DC scheme is immediately consumed and all the initial wealth is invested 
in the first and third pillar. In other words, the DC scheme coincides with the DB 
scheme and is outperformed by the TP.

In order to make a proper comparison between TP and DC, some results related 
to 𝜌 > r are shown in the following as well. We choose � = 0.03 . Table 5 shows the 
resulting wealth equivalents defined analogously to (8) for the DC instead of the DB 
scheme:

We observe that the TP outperforms the DC scheme for all risk aversion coeffi‑
cients considered. As only a small fraction of the initial wealth is immediately con‑
sumed, the results are rather similar to those in Table 4 and the wealth equivalent 

u�(�(x0 − L) + L) ⋅ (x0 − L) − u�((1 − �)L) ⋅ L ⋅ ax(�) = 0

⇔ (�(x0 − L) + L) ⋅ (x0 − L)
−

1

� = (1 − �)L ⋅ (L ⋅ ax(�))
−

1

�

⇔ �(x0 − L)
1−

1

� + �L(L ⋅ ax(�))
−

1

� = L(L ⋅ ax(�))
−

1

� − L(x0 − L)
−

1

�

⇔ �∗ =
L(L ⋅ ax(�))

−
1

� − L(x0 − L)
−

1

�

(x0 − L)
1−

1

� + L(L ⋅ ax(�))
−

1

�

=
L
1−

1

�

(
ax(�)

−
1

� − ax(r)
−

1

�

)

(x0 − L)
1−

1

� + L(L ⋅ ax(�))
−

1

�

,

WE = x0

(
U(�x0 + (1 − �)L, L, L,…)

U
(
{�Lk + (1 − �)L}k=0,1,…

)
) 1

1−�

.
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increases in the risk aversion. While for the TP, the optimal fraction of initial wealth 
increases drastically as the risk aversion becomes smaller, the fraction of wealth 
immediately consumed from the DC scheme remains rather low for all risk aver‑
sions. Compared to Table  4, the optimal fraction invested in the TP is slightly 
smaller than for the case � = r . In other words, the TP loses more of its attractive‑
ness compared to the constant annuity if the subjective and risk-free discount rate 
differ. The differences in Tables 4 and 5 are only moderate, though. Compared to 
Table 4, we observe that all investors benefit (at least slightly) from a more risky 
investment strategy if the subjective discount factor exceeds the risk-free interest 
rate. The reason for this is that the TP’s assets are depleted more quickly under a 
more risky investment strategy, leading to higher payments at younger ages.

3.3 � DC scheme with variable annuities

In this section, we consider the DC scheme with variable annuity payments. We 
assume that the DC plan pays out a life-long (non-constant) annuity adjusted as fol‑
lows. The payoff streams (as long as the fund is not yet depleted) can be expressed in 
the following way:

•	 L0 = X0∕(näx) . At time 0, the first pension payment is made. The remainder 
X�
0
= X0 − nL0 is invested in financial assets and evolves according to (2) which 

delivers X1.
•	 The second individual pension payment is L1 = X1∕(N1äx+1) , which usually dif‑

fers from L0 . The remainder X�
1
= max{X1 − N1L1, 0} is invested in financial 

assets.
•	 The k-th individual pension payment is given by Lk = Xk∕(Nkäx+k) . After the 

annuity payments are made, the remainder X�
k
= max{Xk − NkLk, 0} is invested in 

financial assets.

Unlike in the target pension case, the pension payment in the DC plan does not 
specifically depend on the funding ratio. In case all policyholders have died 
before the account value is depleted, i.e. Nk = 0 but Xk > 0 , there is an additional 

Table 5   Wealth equivalent 
along with the optimal fraction 
of initial wealth invested in 
the TP and the DC scheme 
depending on the relative risk 
aversion parameter

The parameters are taken from Table 1 except for � which is equal to 
0.03 > 0.01 = r

� TP ( � = 0.6) TP ( � = 0.2) DC

WE �∗ WE �∗ �∗

0.5 82.97 0.93 93.13 1 0.03
2 94.99 0.34 95.53 0.985 0.0063
4 97.55 0.165 97.65 0.63 0.0031
6 98.38 0.11 98.44 0.42 0.0021
8 98.80 0.085 98.83 0.315 0.0015
10 99.04 0.065 99.07 0.25 0.0012
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death benefit of Xk∕n to all retirees. We can compute the initial value similarly to 
the TP in (7). Tables 6 and 7 provide the wealth equivalents defined analogously 
to (8) for the alternative DC scheme.

In both tables, we observe that the DC scheme with variable annuity payments 
manages to outperform the TP scheme, since the wealth equivalent is above 100 
for all risk aversions. If a more risky investment strategy is chosen, the wealth 
equivalent increases, especially for the lower risk aversions � = 1∕2, 2, 4 . From 
� = 2 onward, the wealth equivalent decreases in the risk aversion for both invest‑
ment strategies as the retiree invests more of her initial wealth in the constant 
annuity as the risk aversion increases. This makes the overall retirement incomes 
obtained from the TP and the constant annuity or the DC scheme and the constant 
annuity more similar to each other. Compared to the DC scheme with variable 
annuity payments, the pension payments for the target pension are less volatile. 
Our results here, on some level, demonstrate that the retirees, to a certain extent, 
do enjoy taking on higher risks coupled with higher expected returns.

To extend our comparison of TP and DC with variable annuities, we define 
the ruin time of the pension fund as the first time that the collective asset value is 
depleted while there are still members alive, i.e. 𝜏 ∶= inf{t > 0 ∣ Xt = 0,N(t) > 0} . 
Due to the collective risk-sharing, the ruin event is not defined on an individual 

Table 6   Wealth equivalent 
along with the optimal fraction 
of initial wealth invested in the 
TP compared to the DC scheme 
depending on the relative risk 
aversion parameter

The parameters are taken from Table 1, where � = 0.2

� DC TP

�∗ WE �∗

0.5 1 102.43 1
2 0.955 103.21 0.985
4 0.77 103.09 0.715
6 0.61 102.43 0.485
8 0.5 102.07 0.365
10 0.42 101.73 0.29

Table 7   Wealth equivalent 
along with the optimal fraction 
of initial wealth invested in the 
TP compared to the DC scheme 
depending on the relative risk 
aversion parameter

The parameters are taken from Table 1, where � = 0.6

� DC TP

�∗ WE �∗

0.5 1 112.65 0.945
2 0.955 114.50 0.365
4 0.61 107.32 0.18
6 0.405 104.70 0.12
8 0.3 103.47 0.09
10 0.24 102.72 0.07
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but on a collective level. Apparently, we shall consider this risk measure under 
the physical probability measure P:

where � is maximal age reachable by the retirees. Note that we determine the ruin 
probability under the assumption that there is one policyholder who reaches the 
maximum age � with certainty (which is not unrealistic under extremely large pool 
sizes). Tables 8 and 9 provide the ruin probabilities of the TP for different parameter 
combinations of the surplus and loss participation rate � and �.

Table 8 provides a justification for our choice of � and � in the previous numeri‑
cal analyses, since this combination provides the lowest ruin probability among the 
combinations considered.

In Table 9, we observe that a more risky trading strategy which allocates more 
capital to the risky asset leads to a higher ruin probability for all combinations of � 
and � considered. Note that the ruin probability of the DC scheme is equal to 1 for 
both investment strategies � ∈ {0.2, 0.6} , because all of its surplus is directly dis‑
tributed to all the surviving beneficiaries, meaning that the account value of the DC 
scheme will hit zero with certainty, if at least one policyholder lives long enough. 
This is an advantage that the TP has against the DC scheme, as the goal of an occu‑
pational pension scheme should be to provide a life-long retirement income to all of 
its pension beneficiaries.

4 � Systematic mortality risk

4.1 � A simple stochastic mortality model and risk loadings

In this section, we incorporate uncertainty in the mortality law in a similar way as 
[9] by applying a random shock � to the survival probabilities such that the shocked 

(9)Ψ(𝜔 − x) ∶= P(𝜏 < 𝜔 − x∣ 𝜁 ≥ 𝜔 − x).

Table 8   Ruin probability 
Ψ depending on the two 
parameters � and �

The parameters are chosen as in Table 1 with � = 0.2

Ψ � = 0.05 � = 0.4 � = 0.8

� = 0.05 0.02 0.002 0.01
� = 0.4 0.54 0.86 0.95
� = 0.8 0.86 0.95 0.98

Table 9   Ruin probability 
Ψ depending on the two 
parameters � and �

The parameters are chosen as in Table 1 with � = 0.6

Ψ � = 0.05 � = 0.4 � = 0.8

� = 0.05 0.13 0.10 0.36
� = 0.4 0.56 1 1
� = 0.8 0.86 1 1
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survival probabilities are given by tp1−�x
 , where � is assumed to be a continuous ran‑

dom variable taking values in (−∞, 1) . By this assumption, we make sure that the 
shocked survival probabilities tp1−�x

 are still between 0 and 1. We use the notation 
Nt(�) and �(�) to emphasize the dependence of the number of living policyholders 
in a TP and the remaining lifetime of a single policyholder on this shock. Note that, 
assuming the conditional independence of the remaining lifetimes of the retirees, 
it holds (Nt(�) ∣ �) ∼ Bin(n, tp

1−�
x

) . The special case in which no shock is applied is 
obtained by setting � = 0.

To account for this unhedgeable risk, the insurer applies a prudent pricing meas‑
ure to determine the initial value of the retirement plans. That is, under Q, the sur‑
vival probabilities are larger than the survival probabilities under P, i.e.

One way to achieve this is by choosing the original survival curve prudently, i.e. 
tp̃x > tpx , where tp̃x is the survival curve under Q and tpx is the survival curve under 
P. Additionally, we assume that the longevity shock � follows the same distribution 
under P and Q. The survival curves (tp̃x)t≥0 and (tpx)t≥0 , result from the determinis‑
tic mortality model. �P[(tpx)

1−�] and �Q[(tp̃x)
1−𝜖] resulting from the shocked model 

can be considered the survival probabilities from the internal model, under the real 
world measure P and the risk-neutral pricing measure Q. For our numerical analy‑
ses, we have again chosen the Gompertz law for the deterministic part and follow [4] 
to model the shock part. Due to this specific structure, we can calibrate the parame‑
ters in the deterministic force of mortality part first and then estimate the parameters 
of the shock afterwards:

•	 In the first step, we estimate the parameters in the Gompertz law, where the force 
of mortality and the survival probabilities are parameterized as 

 with �b > 0 being the dispersion coefficient and m̃ being the modal age at death 
under safety loadings. We do this by calibrating these two parameters to the 
observed survival probabilities using the DAV 2004R table for a 67-year female 
born in 1953. We obtain m̃ = 98.899 and b̃ = 9.162.

•	 Using the estimated m̃ = 98.899 and b̃ = 9.162 from the first step, in the sec‑
ond step, we estimate the parameters for � , where � is assumed to follow a trun‑
cated normal distribution with a mean �� and a variance �2

�
 , following [4]. As the 

DAV 2004R table is a life table used for calculating prices for annuity products 
in practice, the table is constructed based on prudent pricing, i.e. it does not deal 
with actuarially fair premiums, but loaded ones. Hence, we calibrate �Q[(tp̃x)

1−𝜖] 
to the observed survival probability. We obtain �� = −0.0686 and �� = 0.386.

•	 For the calibration, we follow the criterion of minimizing the sum of the 
squared errors between tp̃x and the observed survival probabilities, and 

�
[
�{𝜁 (𝜖)>t}

]
= P(𝜁(𝜖) > t) < Q(𝜁(𝜖) > t) = �Q

[
�{𝜁 (𝜖)>t}

]
.

�̃x+t =
1

b̃
e

x+t−m̃

b̃ ,

tp̃x =e
e
x−m̃

b̃

(
1−e

t

b̃

)
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between �Q[(tp̃x)
1−𝜖] and the observed survival probabilities on a discrete grid 

t = 0, 1,… ,� − x , i.e. 

 In (10), we have used the calibrated m̃ and b̃ to compute �Q[(tp̃x)
1−�].

•	 Our estimated mortality parameters under Q and those parameters under P taken 
from [10] allow us to compute the loading incorporated in various retirement 
products. Taking a regular constant annuity in advance as an example, we obtain 
a loading of 42% computed by the following formula: 

 Here we have used an interest rate of 1%. The high loading reflects that German 
annuity providers price the annuity products in a very prudent way.

In Fig. 1, we provide the survival curve tp̃observedx
 taken from the DAV 2004R table, 

the calibrated survival curve tp̃x under the Gompertz law and the calibrated inter‑
nal survival curve �Q[(tp̃x)

1−𝜖] obtained under the shocked Gompertz law using the 
above parameters.

While the Gompertz law without shock appears to be closer to the shorter sur‑
vival probabilities taken from the DAV 2004R table, the shocked Gompertz law 
is significantly closer to the longer survival probabilities. This is why, in total, the 

(10)

min
�m,�b

𝜔−x∑
t=0

(
tp̃

observed
x

− tp̃x
)2
,

min
𝜇𝜖 ,𝜎𝜖

𝜔−x∑
t=0

(
tp̃

observed
x

− �Q[(tp̃x)
1−𝜖]

)2
.

𝛿 =

∑𝜔−x

t=0
e−rt�Q[(tp̃x)

1−𝜖]∑𝜔−x

t=0
e−rt�P[(tpx)

1−𝜖]
− 1.

Fig. 1   Survival curve t p̃x taken from the DAV 2004R table, the calibrated survival curve t p̃x under 
the Gompertz law and the calibrated internal survival curve �Q[(t p̃x)

1−𝜖] obtained under the shocked 
Gompertz law
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shocked Gompertz law delivers a lower minimum squared error than the Gompert 
law.

4.2 � Analyzing the utility of TP

To assess the benefits of a TP, we perform similar analyses as in Sect. 3. In addi‑
tion to the parameters in Table 1, we use the parameters derived above, which are 
again summarized in Table 10.

While the definition of the ruin probability remains unchanged compared to 
Sect.  3, the initial value of the TP and the constant annuity change. We define 
T(�) ∶= inf{k ∈ ℕ ∶ Nk(�) = 0} as the first time at which there remain no surviv‑
ing policyholders. Note that the event {T(�) = k} is, for a given � , equivalent to 
{Nk(𝜖) ≤ 0 < Nk−1(𝜖)} with probability

The initial value of the TP can thus be obtained as

The initial value of the constant annuity is given by

P(Nk(𝜖) ≤ 0 < Nk−1(𝜖) ∣ 𝜖) = P(Nk−1(𝜖) > 0 ∣ 𝜖) − P(Nk(𝜖) > 0 ∣ 𝜖)

= 1 − P(Nk−1(𝜖) ≤ 0 ∣ 𝜖) − (1 − P(Nk(𝜖) ≤ 0 ∣ 𝜖))

= 1 − (1 − k−1p
1− 𝜖
x

)n − (1 − (1 − kp
1− 𝜖
x

)n)

= (1 − kp
1− 𝜖
x

)n − (1 − k−1p
1− 𝜖
x

)n.

(11)

V0 = V0({Lk}k=0,1,…) = �Q

[
∞∑
k=0

�{𝜁 (𝜖)>k}v
kLk(𝜖) +

∞∑
k=1

vk ⋅
Xk

n
�{T(𝜖)=k}

]

=

∞∑
k=0

vk�Q

[
�{𝜁 (𝜖)>k}Lk(𝜖)

]
+

∞∑
k=1

vk

n
�Q

[
Xk�{T(𝜖)=k}

]

=

∞∑
k=0

vk�Q

[
�Q

[
�{𝜁 (𝜖)>k}Lk(𝜖) ∣ 𝜖

]]
+

∞∑
k=1

vk

n
�Q

[
�Q

[
Xk�{T(𝜖)=k} ∣ 𝜖

]]

=

∞∑
k=0

vk �Q

[
kp̃

1−𝜖
x

�Q

[
Lk(𝜖) ∣ 𝜁(𝜖) > k, 𝜖

]]

+

∞∑
k=1

vk

n
�Q

[(
(1 − kp̃

1− 𝜖
x

)n − (1 − k−1p̃
1− 𝜖
x

)n
)
�Q

[
Xk ∣ T(𝜖) = k, 𝜖

]]
= x0.

Table 10   Base case parameters 
in addition to Table 1

Longevity shock Gompertz parameters

� ∼ N(−∞,1)(−0.0686, 0.386
2) m̃ = 98.899 , b̃ = 9.162
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where m�(s) = �[es�] for s ∈ ℝ is the moment generating function of �.
Before we can analyze the utility resulting from different compositions of the 

TP and the constant annuity, we need to find a new combination (�, �) which ful‑
fills the condition (7). In Tables 11 and 12, we analyze the behavior of the ini‑
tial value and the ruin probability depending on the parameters � and � for two 
investment strategies � ∈ {0.2, 0.6} . For the ruin probability, we simulate the evo‑
lution of the account under the real-world measure P, while for the initial value, 
we simulate it under Q. Note that in both simulations, the actuarial present value 
̃̈ax(r, 𝜖) (determined under Q) is used.

We observe the following:

•	 We see that an increase in � leads to an increase in the ruin probability. The 
reason for this is that a higher � leads to more surplus being distributed to the 
policyholders, leaving less capital to be invested in the capital market to build 
reserves for the future. The effect of � on the initial value is rather similar to 
Tables 2 and 3.

•	 We observe that � has no monotone effect on the initial value. Instead, its 
effects strongly depends on the choice of the surplus participation � . In the 
current parameter setup, an increase in � leads to an increase in the ruin prob‑
ability.

•	 Most importantly, we observe that the condition (7) is again approximately 
(rounded to the nearest whole number) fulfilled for � = 0.05 and � = 0.4 . We 
choose the same parameters as  in Section 3 to ease the interpretation of our 
results.

•	 Comparing Tables 11 and 12, we observe that an increase in the fraction invested 
in the risky asset leads to higher or equal ruin probabilities, whereas the effect of 
the investment strategy on the initial value of the TP is not monotone.

̃̈ax(r, 𝜖) = �Q

[
∞∑
k=0

�{𝜁 (𝜖)>k}v
k

]
=

∞∑
k=0

vk�Q

[
�{𝜁 (𝜖)>k}

]
=

∞∑
k=0

vkkp̃x m𝜖(− ln kp̃x),

Table 11   Initial value V0 and 
ruin probability Ψ depending 
on the two parameters � and � . 
The parameters are chosen as in 
Tables 1 and 10 with � = 0.2

(V0,Ψ) � = 0.05 � = 0.4 � = 0.8

� = 0.05 (99.68,0.01) (99.81,0.01) (99.86,0.13)
� = 0.4 (99.70,0.02) (99.99,1) (99.99, 1)
� = 0.8 (99.59,0.04) (97.14,1) (89.82, 1)

Table 12   Initial value V0 and 
ruin probability Ψ depending 
on the two parameters � and � . 
The parameters are chosen as in 
Tables 1 and 10 with � = 0.6

(V0,Ψ) � = 0.05 � = 0.4 � = 0.8

� = 0.05 (99.62,0.01) (99.90,0.33) (99.98,0.65)
� = 0.4 (99.68,0.03) (99.99,1) (99.99,1)
� = 0.8 (96.19,0.11) (90.07,1) (93.36,1)
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4.2.1 � Comparison of TP and DB

The expected lifetime utility resulting from both the TP and a constant annuity is 
determined as follows:

Note that the expected utility is computed under the real-world measure P, i.e. using 
the survival curve kpx instead of kp̃x.

The wealth equivalents along with the optimal fractions of initial wealth 
invested in the annuity under the new stochastic mortality model are provided in 
Table 13.

Similar to Table  4, we observe that the wealth equivalent is always smaller 
than 100 and that the optimal fraction of wealth invested in the TP is always 
larger than zero, which suggests again that the TP can be an attractive supplement 
to constant annuities. The wealth equivalent is again increasing and the optimal 
fraction is again decreasing in the risk aversion, since retirees with a higher risk 
aversion seek more stable payments during their retirement phase. Note that the 
optimal level of initial wealth invested in the TP is, for all degrees of risk aver‑
sion, smaller than in Table 4, except for � = 1∕2 which is equal for � = 0.2 . The 
reason for this is the relatively higher premium of the annuity resulting from the 

U
(
{𝜙Lk + (1 − 𝜙)L}k=0,1,…

)

= �

[
∞∑
k=0

�{𝜁 (𝜖)>k}e
−𝜌ku

(
𝜙Lk(𝜖) + (1 − 𝜙)L

)]

=

∞∑
k=0

e−𝜌k�
[
�{𝜁 (𝜖)>k}u

(
𝜙Lk(𝜖) + (1 − 𝜙)L

)]

=

∞∑
k=0

e−𝜌k�
[
�
[
�{𝜁 (𝜖)>k}u

(
𝜙Lk(𝜖) + (1 − 𝜙)L

)
∣ 𝜖

]]

=

∞∑
k=0

e−𝜌k �
[
kp

1−𝜖
x

�
[
u
(
𝜙Lk(𝜖) + (1 − 𝜙)L

)
∣ 𝜁(𝜖) > k, 𝜖

]]
.

Table 13   Wealth equivalent 
along with the optimal fraction 
of initial wealth invested in the 
TP compared to the DB scheme 
( � = 0 ) depending on the 
relative risk aversion parameter

We use � = 0.05 and � = 0.4 . The remaining parameters are taken 
from Tables 1 and 10

� = 0.2 � = 0.6

� WE �∗ WE �∗

0.5 75.43 1 80.82 0.725
2 87.08 0.76 96.14 0.15
4 92.23 0.49 98.15 0.07
6 94.86 0.335 98.81 0.045
8 96.24 0.25 99.08 0.035
10 96.91 0.205 99.30 0.025
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risk-neutral pricing measure Q due to the longevity shock � which leaves less 
capital to be invested in the TP to achieve the same level of constant retirement 
income. Further, we observe that a riskier investment strategy now influences the 
wealth equivalent more strongly. The higher fraction invested in the risky asset 
forces the retirees to invest more in the constant annuity which is, due to the risk 
loading, more expensive than in Sect. 3 leading to losses in utility.

4.2.2 � Comparison of TP and DC

We consider the same DC scheme setup as in Section 3. The expected discounted 
lifetime utility is given by

following the standard actuarial notation. The optimal fraction of wealth invested in 
the DC scheme � can again be determined explicitly. Consider the following optimi‑
zation problem:

Similarly to Sect. 3, we can derive the optimal level of initial wealth set aside explic‑
itly as

where we have used x0 − L = L ̃̈ax(r, 𝜖) − L =∶ Lãx(r, 𝜖) in the last equation. In addi‑
tion to the discount rate, the actuarial present values ax(�, �) and ãx(r, 𝜖) differ in the 
survival curve used. Assuming tp̃x > tpx , we obtain the following special cases:

•	 � ≥ r : In this case, 

U(𝜙x0 + (1 − 𝜙)L, L, L,…)

= �

[
u(𝜙x0 + (1 − 𝜙)L) +

∞∑
k=1

e−𝜌k�{𝜁 (𝜖)>k}u((1 − 𝜙)L)

]

= u(𝜙x0 + (1 − 𝜙)L) + u((1 − 𝜙)L)

∞∑
k=1

e−𝜌kkpx ⋅ m𝜖(− ln kpx)

= u(𝜙x0 + (1 − 𝜙)L) + u((1 − 𝜙)L)ax(𝜌, 𝜖),

max
�∈[0,1]

u(�(x0 − L) + L) + u((1 − �)L)ax(�, �).

𝜙∗ =
L(L ⋅ ax(𝜌, 𝜖))

−
1

𝛾 − L(x0 − L)
−

1

𝛾

(x0 − L)
1−

1

𝛾 + L(L ⋅ ax(𝜌, 𝜖))
−

1

𝛾

=
L
1−

1

𝛾

(
ax(𝜌, 𝜖)

−
1

𝛾 − ãx(r, 𝜖)
−

1

𝛾

)

(x0 − L)
1−

1

𝛾 + L(L ⋅ ax(𝜌, 𝜖))
−

1

𝛾

,

ax(𝜌, 𝜖)
−

1

𝛾 =

(
∞∑
k=0

e−𝜌kkpx m𝜖(− ln kpx)

)−
1

𝛾

>

(
∞∑
k=0

e−rkkp̃x m𝜖(− ln kp̃x)

)−
1

𝛾

= ãx(r, 𝜖)
−

1

𝛾
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 because e−𝜌kkpx m𝜖(− ln kpx) < e−rkkp̃x m𝜖(− ln kp̃x) for all k, and thus, 𝜙∗ > 0 . 
Due to the differences in the survival curve and the discount rate, the annuity 
is overpriced from the retiree’s perspective and, therefore, some fraction of the 
initial wealth is immediately consumed.

•	 𝜌 < r : In this case, we have e−𝜌k > e−rk and kpx m𝜖(− ln kpx) < kp̃x m𝜖(− ln kp̃x) . 
Hence, we cannot draw general conclusions on the relation between ax(�, �)

−
1

� 
and ãx(r, 𝜖)

−
1

𝛾.

In Table 14, we now compare the DC scheme to the TP under the assumption that 
� ≠ r . Similar to Sect. 3, we choose � = 0.03.

From Table  14, we can basically draw the same conclusions as from Table  5, 
where we have considered the case without longevity shock. The main difference is 
that the TP loses attractiveness if the more risky investment strategy is used, simi‑
larly to Table 13. Nevertheless, the TP outperforms the DC scheme for both invest‑
ment strategies under consideration.

4.2.3 � DC scheme with variable annuities

We assume that the DC plan pays out a life-long annuity designed in a similar way 
as in Sect. 3.3. The results are provided in Tables 15 and 16.

From Tables 15 and 16, we can see that the DC scheme again generates a higher 
expected lifetime utility than the TP for both investment strategies. Compared to 
Tables  6 and 7, the wealth equivalents have increases substantially, implying that 
the superiority of the DC scheme compared to the TP is even more pronounced 
in the presence of loadings. Note that the wealth equivalent is decreasing for both 
investment strategies, where the decrease starts after � = 2 for the investment strat‑
egy � = 0.2 . The reason for this is that, for a risk aversion of � = 1∕2 , the optimal 
fraction of wealth invested in the TP is 1 for � = 0.2 but 0.725 for � = 0.6 , making 
the difference between the TP and DC scheme more pronounced in the second case 
than in the first case. However, the DC scheme has again a ruin probability of 1 and 
is therefore likely not to deliver a life-long retirement income to its beneficiaries, 

Table 14   Wealth equivalent 
along with the optimal fraction 
of initial wealth invested in 
the TP and the DC scheme 
depending on the relative risk 
aversion parameter

The parameters are taken from Tables 1 and 10 except for � which is 
equal to 0.03 > 0.01 = r

� TP ( � = 0.6) TP ( � = 0.2) DC

WE �∗ WE �∗ �∗

0.5 84.54 0.7 81.03 1 0.0825
2 97.16 0.14 89.17 0.78 0.0136
4 98.58 0.065 94.05 0.47 0.0064
6 99.16 0.04 95.94 0.32 0.0041
8 99.37 0.03 96.96 0.25 0.0031
10 99.47 0.025 97.64 0.2 0.0024
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whereas the TP has a ruin probability of only 0.01 and 0.33 for � = 0.2 and � = 0.6 , 
respectively (see Tables 11 and 12).

5 � Conclusion

This paper analyzes the potential of the newly introduced German pension scheme 
TP, a pension plan which links the pension payments to the beneficiaries to the 
mortality experienced and the performance of the financial market. Each year, the 
pension payments are adjusted based on the funding ratio of the pension fund. We 
include two parameters in the design of the product: One which controls the sur‑
plus participation and another one which controls the loss participation. The two 
parameters are chosen in such a way that the initial value of the TP is equal to the 
initial wealth of the retiree. We consider occupational pension schemes like the TP 
as an additional source of retirement income to constant annuity payments resulting 
from the first and third pillar, compute the optimal fraction of initial wealth allo‑
cated to the TP, a DC or a DB scheme and then compare the resulting optimal levels 
of expected utility of these three pension schemes. This analysis is carried out in 
two different model setups: First, we consider an actuarially fair pricing framework 
disregarding systematic longevity risk, and, secondly, we include systematic longev‑
ity risk in the model and assume that risk loadings are charged from the retirees. Our 

Table 15   Wealth equivalent 
along with the optimal fraction 
of initial wealth invested in the 
TP compared to the DC scheme 
depending on the relative risk 
aversion parameter

The parameters are taken from Tables 1 and 10 with � = 0.2

� DC TP

�∗ WE �∗

0.5 1 112.29 1
2 0.97 112.73 0.76
4 0.71 106.68 0.49
6 0.485 104.16 0.335
8 0.45 104.46 0.25
10 0.36 103.30 0.205

Table 16   Wealth equivalent 
along with the optimal fraction 
of initial wealth invested in the 
TP compared to the DC scheme 
depending on the relative risk 
aversion parameter

The parameters are taken from Tables 1 and 10 with � = 0.6

� DC TP

�∗ WE �∗

0.5 1 156.32 0.725
2 0.91 132.60 0.15
4 0.62 116.65 0.07
6 0.46 111.02 0.045
8 0.345 107.94 0.035
10 0.25 105.82 0.025
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numerical results show that a TP can outperform some DC and the DB scheme for 
all the risk aversions considered and suggest that the newly introduced TP is a ben‑
eficial supplementary retirement plan to constant annuities (obtained from the first 
and third pillar). However, the DC scheme with variable annuities outperforms the 
TP for all risk aversions under consideration. The disadvantage of this DC scheme 
is, on the other hand, that it defaults with certainty under reasonable parameter 
choices, whereas the TP can deliver a ruin probability which is close to zero.

Note that in this paper, we only analyze the benefits of a TP as an additional 
source of retirement income in addition to fixed income retirement plans from the 
first and third pillar. That is, when convincing employees to join a TP scheme, it 
should be emphasized that the TP is not able to provide a guaranteed retirement 
income and that additional retirement plans are needed if a hard minimum guaran‑
teed income shall be achieved throughout the retirement phase.

A main assumption for the attractiveness of a TP is a well-performing market 
which is, in our numerical analysis, ensured by the choice of the market price of risk 
� =

�−r

�
 . These allow the TP more upside potential than traditional retirement plans 

which rely on the constant (and currently low) interest rate. In this sense, our results 
support the current trend that less capital should be invested in financial products 
which provide guarantees, as they are difficult to finance in the current low interest 
rate environment.

Another main assumption made in this paper is the homogeneous cohort of retir‑
ees, in particular the assumption that all the retirees have the same age x. In practice, 
there are retirees who have different ages and they might be pooled even though 
their ages are not identical. Therefore, an analysis with different cohorts allowing for 
different ages of the retirees would be a natural extension to our model setup.
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