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Abstract
For a general fully continuous life insurance model, the variance of the loss-at-
issue random variable is the expectation of the square of the discounted value of 
the net amount at risk at the moment of death. In 1964 Jim Hickman gave an ele-
mentary and elegant derivation of this result by the method of integration by parts. 
One might expect that the method of summation by parts could be used to treat the 
fully discrete case. However, there are two difficulties. The summation-by-parts for-
mula involves shifting an index, making it somewhat unwieldy. In the fully discrete 
case, the variance of the loss-at-issue random variable is more complicated; it is the 
expectation of the square of the discounted value of the net amount at risk at the end 
of the year of death times a survival probability factor. The purpose of this note is to 
show that one can indeed use the method of summation by parts to find the variance 
of the loss-at-issue random variable for a fully discrete life insurance policy.

Keywords  Loss at issue · Hattendorff’s theorem · Summation by parts · Net amount 
at risk

The celebrated Hattendorff Theorem [6] in life contingencies is perhaps best viewed 
as an application of the result that increments of a martingale over disjoint time 
intervals are uncorrelated [3]. The purpose of this note is to present an elementary 
derivation of a version of the theorem. The word “elementary” is used in the sense 
that the key tool in the derivation is the technique of summation by parts.

We consider the model, presented in Sect. 7.4 of [1] and also in Sect. 5.5 of 
[4], of a general fully discrete life insurance on (x). For j = 1, 2, 3, …, the death 
benefit in the jth policy year is bj, payable at time j, which is the end of the policy 
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year; the premium paid in the jth policy year is πj−1, payable at time j − 1, which 
is the beginning of the policy year. Let Kx denote the curtate future lifetime of (x); 
for simplicity, we shall use K for Kx. The insurer’s loss at issue random variable 
is

For j = 0, 1, 2, …, let jV denote the reserve of the policy at time j; also, define

the present value of the net amount at risk at the end of policy year j + 1. The version 
of Hattendorff’s Theorem that we shall derive is

Note that we do not necessarily assume 0V = 0.
Derivation: It follows from the reserve recursion formula,

that

where Δ denotes the forward difference operator. Applying (3) to Eq. (1) yields

Because

Eq. (4) can be rewritten as

with the definition

(1)L ∶= vK+1bK+1 −

K∑

j=0

vj�j

�(j) ∶= vj+1(bj+1 − j+1V),

(2)Var[L] = E[[�(K)]2 × px+K].

jV + �j = v
(
j+1Vpx+j + bj+1qx+j

)
,

(3)vj�j = Δ(vjjV) + �(j)qx+j,

(4)L = vK+1bK+1 −

K∑

j=0

[Δ(vjjV) + �(j)qx+j].

K∑

j=0

Δ(vjjV) = vK+1K+1V − v00V = vK+1K+1V − E[L],

(5)
L − E[L] = �(K) −

K∑

j=0

�(j)qx+j

= �(K) − �(K),

(6)�(k) ∶=

k∑

j=0

�(j)qx+j, k = 0, 1, 2,…
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By (5),

Thus, deriving formula (2) is equivalent to showing

Because Pr [K = k] = kpx − k+1px = −Δkpx,

To evaluate (8), we use the summation-by-parts formula,

Hence,

From (6),

which implies

With k+1px × qx+k+1 = Pr[K = k + 1] , the series on the right-hand side of Eq. (9) is

because �(0)qx = �(0) . It follows from (9) and (10) that we have derived (7). Thus 
we have presented an elementary derivation of formula (2).

Var[L] = E[[�(K) − �(K)]2]

= E[[�(K)]2] + E[[�(K)]2] − 2E[�(K)�(K)].

(7)E[[�(K)]2] = 2E[�(K)�(K)] − E[[�(K)]2qx+K].

(8)E[[�(K)]2] = −

∞∑

k=0

[�(k)]2Δkpx.

n∑

k=m

g(k)Δh(k) = g(k)h(k)|k=n+1
k=m

−

n∑

k=m

h(k + 1)Δg(k).

(9)

E[[�(K)]2] = −[�(k)]2kpx
|||
k=∞

k=0
+

∞∑

k=0

k+1pxΔ
(
[�(k)]2

)

= [�(0)]20px +

∞∑

k=0

k+1px
(
[�(k + 1)]2 − [�(k)]2

)
.

�(k) = �(k + 1) − �(k + 1)qx+k+1, k = 0, 1, 2,… ,

[�(k + 1)]2 − [�(k)]2 = 2�(k + 1)�(k + 1)qx+k+1 − [�(k + 1)qx+k+1]
2.

(10)

∞∑

k=0

(
[�(k + 1)]2 − [�(k)]2

)
k+1px

=

∞∑

k=0

2�(k + 1)�(k + 1)Pr[K = k + 1] −

∞∑

k=0

[�(k + 1)]2qx+k+1 Pr[K = k + 1]

= 2{E[�(K)�(K)] − �(0)�(0)qx} − {E[[�(K)]2qx+K] − [�(0)]2(qx)
2}

= 2E[�(K)�(K)] − E[[�(K)]2qx+K] − [�(0)]2
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Remarks  (i) We were motivated to seek this summation-by-parts derivation because 
there is a rather straightforward integration-by-parts derivation in the fully continu-
ous case [5, 7]. Let Tx denote the future lifetime of (x). The fully continuous ana-
logues of (1) and (2) are

and

respectively. To derive (12), we apply the following form of Thiele’s differential 
equation,

to (11), yielding

Because ∫ T
x

0
d(vttV) = vTx T

x
V − v00V = vTx T

x
V − E[L] , we obtain

Hence (12) is proved if we can show that the expectation of the square of the right-
hand side of (13) is

This is equivalent to showing

Equation (14), simpler than its discrete analogue (7), can be readily verified by an 
integration by parts, as shown on page 43 of [5].

(ii) One may better understand (5) by noting that �(j)qx+j is the present value of 
the cost of insurance based upon the net amount at risk for policy year (j + 1).

(iii) Formula (2) is particularly useful if the death benefit, payable at the end of 
the year of death, is a face amount plus the reserve, because the net amount at risk is 
then just the face amount. (The face amount can be allowed to change from year to 
year.) Type B Universal Life insurance policies have such death benefits [2, 8].

(iv) As noted above, we do not necessarily assume 0V = 0. For j = 0, 1, 2, …, let

(11)L = vTxbTx − ∫
T
x

0

vt�tdt

(12)Var[L] = E[[vTx (bTx − Tx
V)]2],

vt�tdt = d(vttV) + vt(bt − tV)�x+tdt,

L = vTxbTx − ∫
T
x

0

d(vttV) − ∫
T
x

0

vt(bt − tV)�x+tdt.

(13)L − E[L] = vTx (bTx − Tx
V) − ∫

T
x

0

vt(bt − tV)�x+tdt.

E[[vTx (bTx − Tx
V)]2].

(14)

E[[∫
T
x

0

vt(bt − tV)�x+tdt]
2] = 2E[vTx (bTx − Tx

V) × ∫
T
x

0

vt(bt − tV)�x+tdt].
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be the time-j prospective loss random variable; this is (7.4.4) in [1]. Then,

see (7.4.5) in [1]. Formula (2) is generalized as
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jL ∶= vKx+j+1bj+Kx+j+1
−

Kx+j∑

k=0

vk�j+k

E[jL] = jV;

Var[jL] = E

[
[vKx+j+1(bj+Kx+j+1

− j+Kx+j+1
V)]2 × px+j+Kx+j

]
.
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