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Abstract

In the last teen years many new risk functions have been introduced 
(coherent risk measures, expectation bounded risk measures, generalized 
deviations, etc.) and many actuarial and/or financial problems have been 
revisited by using them. The use of new risk functions is well justified by the 
rapid development and evolution of the financial markets and the growing 
presence of skewness and kurtosis, among many other reasons, but the 
practical final result of many problems may critically depend on the concrete 
risk function we are drawing on. This paper deals with optimization 
problems involving risk functions and proposes several risk level upper 
bounds that apply regardless of the considered function. In particular both 
capital requirements and usual central moments and dispersions are bounded 
from above. The methodology is general enough and applies for perfect or 
imperfect financial markets, static or dynamic models, pricing or hedging 
issues, portfolio choice problems, optimal reinsurance problems, etc. 
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Risk level upper bounds with general risk functions 

Resumen 

En los últimos diez años muchas nuevas funciones de riesgo han sido 
introducidas (medidas coherentes del riesgo, medidas de riesgo acotadas por 
la esperanza, desviaciones generalizadas, etc) y muchos problemas 
actuariales y/o financieros han sido nuevamente analizados bajo el prisma de 
éstas. El uso de nuevas funciones de riesgo está más que justificado por el 
rápido desarrollo y evolución de los mercados, y la cada vez mayor 
presencia de asimetrías y colas gruesas, entre otras muchas razones, pero el 
resultado final de muchos problemas de interés práctico puede depender de 
forma crítica de la función de riesgo considerada. Este artículo estudia 
problemas de optimización con funciones de riesgo, y obtiene cotas 
superiores del nivel óptimo del mismo, que acotan independientemente de la 
función de riesgo elegida. En particular, se acotan riesgos interpretables en 
términos de requerimientos de capital y otros que son dispersiones respecto a 
un momento central. La metodología es muy general, y es aplicable para 
mercados perfectos e imperfectos, estáticos o dinámicos, modelos de 
valoración y cobertura, temas de selección de inversiones, problemas de 
reaseguro óptimo, etc. 

Palabras clave. Medidas de riesgo, desviación, solución límite, cota del 
nivel de riesgo. 

Clasificación de la A.M.S., 90C48, 90C47, 90C34.
Clasificación del J.E.L., G11, G13, G22 

I. Introduction 

General risk functions are becoming more and more important in finance and 
insurance. Since the seminal paper of Artzner et al. (1999) introduced the 
axioms and properties of their “coherent measures of risk”, many authors 
have extended the discussion and the analysis. The recent development of 
new markets (insurance or weather linked derivatives, commodity 
derivatives, energy/electricity markets, etc.) and products (inflation-linked 
bonds, equity indexes annuities or unit-links, hedge funds, etc.), the 
necessity of managing new types of risk (credit risk, operational risk, etc.) 
and the (often legal) obligation of providing initial capital requirements have 
made it rather convenient to overcome the variance as the most important 
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risk measure and to introduce more general risk functions allowing us to 
address far more complex problems.4

Despite the growing interest in more general risk measurement methods 
there are no clear arguments justifying the use of a concrete risk function. 
Even for the standard Portfolio Choice Problem one can find different 
approaches using different risk measures. For instance, Benati (2003) 
minimizes the worst conditional expectation (WCE) in a static (or one 
period) framework. Also in a static setting, and using sample-linked finite 
probability spaces, Konno et al. (2005) minimize the absolute deviation and 
Mansini et al. (2007) minimize the conditional value at risk (CVaR) and 
compare with other measures. Alexander et al. (2006) compare the 
minimization of value at risk (VaR) and CVaR for a portfolio of derivatives. 
Anson et al. (2007) consider a vector optimization problem generated by 
several deviation measures reflecting the level of dispersion, skewness and 
kurtosis of a portfolio composed of hedge funds. Schied (2007) minimizes a 
general convex risk measure in a dynamic setting. 

Many financial or insurance issues may lead to an optimization problem 
involving risk functions. References cited above are mainly related to 
portfolio choice theory but there are much more topics that may involve 
mathematical programming. So, pricing and optimal hedging in incomplete 
markets may imply the minimization of a risk measure among the 
differences between the pay-off to be priced (or hedged) and those pay-offs 
provided by the available self-financing hedging strategies (Föllmer and 
Leukert, 2000, Nakano, 2003, etc.). The loaded rate of equity indexed 
annuities (or unit-links), usual in the recent activity of many insurers, may be 
computed so as to control the issuer risk level (Barbarin and Devolder, 
2005). Optimal reinsurance problems (Young, 1999, or Kaluszka, 2005), 
equilibrium pricing problems (Gao et al., 2007), etc., may be also related to 
risk measures optimization. 

Risk functions are almost never linear, though most of them are convex. 
Nevertheless, many authors have transformed the optimal risk problem so as 
to get a new equivalent linear problem. For example, Benati (2003) proposed 
a linear programming approach that permits us to deal with the WCE, Konno 
et al. (2005) showed that the minimization of the absolute deviation and the 
downside absolute semi-deviation may be also studied by linear 
programming methods and Mansini et al. (2007) extended their discussion 
so as to use linear programming when minimizing the CVaR and other risk 

4 It may be worth to recall that the variance is not compatible with the Second Order Stochastic 
Dominance if asymmetric returns are involved in the analysis (Ogryczak and Ruszczynski, 2002). 
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functions. Besides, Balbás and Romera (2007) developed a linear 
programming analysis in infinite-dimensional Banach spaces and a simplex-
like algorithm so as to hedge against the interest rate risk, and their study 
was extended in Balbás et al. (2009) in order to develop a general linear 
method applying for every risk minimization problem involving expectation 
bounded or deviation measures (Rockafellar et al., 2006). 

As said above we are far from a consensus about the “most appropriate” risk 
function to draw on, even when studying a classical problem. Furthermore, 
the practical result of many problems critically depends on the selected risk 
measure. For example, if we are computing initial reserves or capital 
requirements that a fund manager must incorporate, the choice of the risk 
function is far of being an irrelevant topic, and this situation also holds for 
more complex problems. 

This paper deals with a general risk minimization problem and proposes 
several risk level upper bounds that apply independently of the considered 
risk function. In particular both capital requirements and usual moments 
(dispersions or deviations) are bounded from above. This seems to be an 
important question since it yields an objective reference that overcomes 
“conservative or risky selections” of the risk measurement procedure. The 
stability of the optimal strategy with respect to the chosen risk function will 
also be treated. 

The paper’s outline is as follows. Second section will present the 
background, the general framework and the basic notations we will use 
throughout the article. Section III will present the risk level upper bounds 
that hold in a general risk minimization problem. The main idea is to apply 
those findings of Balbás et al. (2009) and use their infinite-dimensional 
linear programming approach so as to construct linear optimization problems 
whose feasible sets contain those involved in every particular risk measure 
or deviation measure.5 The main result is Theorem 4, that bounds both 
capital requirements linked measures and deviations. Sections IV and V 
extend the discussion and yield new improvements of the bounds that apply 
under particular assumptions. Theorems 7 and 8 seem to be their more 
important findings. Section VI analyzes the stability of the solution of the 
optimization problem with regard to the utilized risk function, and Theorem 
12 is its most important result. Section VII is devoted to present two
illustrative actuarial and financial problems. In particular, we will deal with 

5 See also Balbás (2007). 

26



Alejandro Balbás, Beatriz Balbás and Antonio Heras

an optimal hedging problem, and an optimal reinsurance problem. The last 
section of the paper points out the most important conclusions. 

II. Preliminaries and notations 

Let as assume that 0t  and Tt  represent the current and a future date 
respectively. Consider the probability space ),,(  composed of the set 

 (states of nature), the -algebra  (information available at ) and 
the probability measure

Tt
. Let be ),1[p and suppose that the convex 

cone  contains a set of pay-offs reachable at ),,(pLY T  (maybe by 
using self-financing strategies),  (henceforth  for short) 
denoting the usual space of 

),,(pL pL
measurable random variables y  such that 

the expectation of py  is finite.

Denote by ],1(q  the conjugate of p  ( 1/1/1 qp
qL

). It is well known 
that the Riesz Representation Theorem states that  is the dual space of 
(Luenberger, 1969). In particular, every real valued linear and continuous 
function on  takes the form 

pL

pL yqE *yLp ,  being an 
arbitrary element that only depends on the linear function we are dealing 
with, and

qLq*

E  denoting the mathematical expectation of any random 
variable.

Consider a general risk function  
pL:

and a finite number or linear constraints jj byqE , mj ,...,2,1 , where 

 and q
j Lq jb  are arbitrary, m,...,2,1j .

We will deal with the risk minimization problem 

Yy
mjbyqE

yMin

jj ,...,2,1,                           (1)                           

The cone constraint Yy  and the linear constraints above will be related in 
practice to standard restrictions. For example, short-selling restrictions, 
minimum required expected returns, budget constraints, fix positions in a 
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group of securities or in a single one, etc. Section VI will be devoted to 
present examples and will illustrate this fact. 

Consider the convex and pq LL , -closed subset of qL  given by 

1)(,0: zEzLz q
R .                             (2)                         

If  is a coherent (Artzner et al., 1999) and expectation bounded 
(Rockafellar et al., 2006) risk measure then Rockafellar et al. (2006) have 
stated the existence of R , a convex and pq LL , -compact subset 

of qL  such that  

zyzEMaxy : .                                                                 (3) 

Consequently, following Balbás et al. (2009), it may be easily proved that 
Problem (1) is equivalent to Problem 

Yy
mjbyqE

zyzE
Min

jj

,
,...,2,1

,0
                                                 (4) 

y,  being the decision variable. More accurately, y  solves (1) if and only 
if there exists  such that y,  solves (4), in which case y
holds.

On the other hand if  is a lower range dominated deviation measure then 
Rockafellar et al. (2006) have stated that E  is coherent and expectation 
bounded. Then, if we still represent by R  the convex and 

pq LL , -compact subset of qL  such that (3) holds for E  rather than 
, then Problem (1) is equivalent to  

Yy
mjbyqE

zzyE
Min

jj

,
,...,2,1

,01
                                    (5) 
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As pointed out by Balbás et al. (2009), (4) and (5) are linear regardless of the 
properties of the risk function . Since the first constraint of (4) or (5) is 
valued on the Banach space C  composed of the real valued and 

(weakly*) continuous functions on the compact space , the dual problem 

decision variable must belong to M , Banach space of the inner-regular 

-additive measures on the Borel -algebra of C  (see Balbás et al., 

2009, for further details on all of these properties). Thus, if P  denotes 

the (convex and C,M -compact) set of inner regular 

probability measures on the Borel -algebra of  then the dual of (4) 
becomes  

P
mj

dEq

bMax

m
j

Y

m

j
jj

m

j
jj

,
,...,2,10

0
1

1

                        (6) 

where ,  is the decision variable,  denotes the order in  given by  Y
qL

21 zz Y  if and only if 21 yzEyzE  for every Yy ,
and

dvE

denotes the element in such thatqLz0

dyzEyzE 0

for every .pLy 6

                                                
6 Notice that dyzEyLp

0

 defines a continuous linear function, so the 

existence of  follows from the Riesz Representation Theorem (see Balbás et al., 2009, for further 

details).

z
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Similarly, the dual of (5) is  

P
mj

dEq

bMax

m
j

Y

m

j
jj

m

j
jj

,
,...,2,10

01
1

1

        (7) 

where the notations are analogous. 

Since we may be dealing with infinitely many dimensions the absence of the 
so called duality gap between (4) and (6) (or (5) and (7)) is not guaranteed 
(Luenberger, 1969 or Anderson and Nash, 1987), i.e., the optimal value of 
both problems may be distinct. To prevent this pathological possibility 
hereafter we will impose: 

Assumption 1.  The Slater Qualification holds, i.e., there exists Yy  such 
that jj byqE , mj ,...,2,1 .7                                                                                         

III. Capital requirements and deviations upper bounds

This section will provide upper bounds for the optimal value of (1) that will 
not depend on . Problems (8) an (9) below will play a crucial role 

R
m

j

Y

m

j
jj

m

j
jj

P
mj

dEq

bMax

R

,
,...,2,10

0
1

1

                  (8) 

                                                
7  If  reflects (maybe legal) capital requirements it hardly makes sense to assume that the infimum 
value of (1) or (4) might equal . Furthermore, if the primal problem is bounded, the Slater 
Qualification guarantees the absence of duality gap between (4) and (6) (Luenberger, 1969). Similar 
arguments also apply for Problems (5) and (7) (in particular, it is obvious that the optimal value of (5) 
cannot be ).
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and

R
m

j

Y

m

j
jj

m

j
jj

P
mj

dEq

bMax

R

,
,...,2,10

01
1

1

            (9) 

Notice that Problems (6) and (7) and Problems (8) and (9) are almost similar. 
The only difference is in the first and last restrictions since (8) and (9) focus 
on the whole set R  of (2). Since R  is not necessarily pq LL , -compact 
the convergence of the integral in the second constraint of (8) or (9) is not 
guaranteed. Thus, to prevent this caveat we will impose the decision variable 

 to have pL,qL -compact support (Luenberger, 1969). 

We will denote by M and D the optimal values of (8) and (9) respectively. 
Notice that M and D do not depend on , since they are given by the 
convex cone Y  and the sets mjb j 1, ,...,2,  and mjq j ,...,2,1, .
Equalities

 M                                                                                              (10) 
or

  D                                                                                               (11) 

might hold, although sufficient conditions to prevent them will be provided 
throughout the paper. On the other hand, if (8) ((9)) were infeasible we 
would accept the convention M  (D ).8

Lemma 2. If R  is pq LL , -compact then M  and D .

Proof. It is easy to verify that the pq LL , -compactness of  
guarantees that

R

pLR :
                                                
8 Needless to say that D  cannot hold. However, we will not use this property, so we will not 
prove it either. Besides, M   hardly could make sense in practice, mainly if  reflects capital 
requirements. 
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given by  

RzyzEMaxyR :                                                    (12) 

is a coherent and expectation bounded risk measure. Then, Assumption 1 
guarantees that (4) is feasible if R  substitutes . Hence, the usual 
primal-dual relationships (Luenberger, 1969) guarantee that (8) is bounded 
from above (M ), unless (4) is unbounded in which case M .
Inequality D  may be proved with similar arguments.                          

Remark 3.  3.1. The pq LL , -compactness of  R  will often hold in very 
important particular situations. For instance, it is satisfied if  is a finite set, 
since then  has only finite dimensions and qL R  becomes the obviously 
closed and bounded set  

C

s
ss

C
ssR zzz

1
1 1,0: ,

C  denoting the cardinal of  and s  denoting the probability of the 
event s , Cs ,...,2,1  (obviously, without loss of generality we can 
assume that 0s , Cs ,...,2,1 ).

3.2. More generally, with the same arguments as above R  is pq LL , -
compact if  is purely atomic with a finite number of atoms. 

3.3. To deal with a finite set  is in some sense frequent in Finance and 
Insurance. For instance, in Portfolio Choice Theory many authors usually 
consider a one-period model, and final pay-offs are estimated by using the 
(finite) probability space generated by a real data sample (Konno and 
Yamazaki, 1991, Konno et al., 2005, Mansini et al., 2007, amongst many 
others).  is also finite if one draws on a dynamic discrete-time (usually 
incomplete or imperfect) pricing model and prices or hedges by minimizing 
risk levels (see, for instance, Jouini and Kallal, 2001, or Nakano, 2003).                         

Next let us prove that the value of M (D) provides us with upper bounds in a 
Risk Minimization Problem. These upper bounds apply for both deviations 
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or capital requirement linked risk measures and they do not depend on the 
concrete risk function  we are using. 

Theorem 4. 4.1. If  is a coherent and expectation bounded risk measure 
and  solves (1) then the inequality Yy0 0y  M holds. 
4.2. If  is a lower range dominated deviation measure and Yy0  solves 
(1) then the inequality 0y  D holds. 

Proof.  Let us prove 4.1 since 4.2 is similar. Assumption (1) guarantees the 

existence of ** , , dual solution of (6) such that . If 

we still denote by 

m

j
jjby

1

*
0

*  the inner regular probability measure with compact 
support on  that equals R

*  on  and vanishes out of , then ** ,
m

j
jjb

1

*is also (8)-feasible. Consequently, the inequality  M must 

hold.                                                                                                 

Remark 5.  5.1. Let us suppose that . The standard deviation 2p 2  is 
the most popular deviation measure when dealing with risk minimization 
problems in a classical framework. Unfortunately, the standard deviation is 
not lower range dominated, and the previous result does not apply in general. 
However, as pointed out in Ogryczak and Ruszczynski (2002), 2  is not 
appropriate (it is not consistent with the Second Order Stochastic 
Dominance) unless we are facing symmetric distributions. If every is

symmetric then

Yy

yy 22 2 ,
/12yyEE

2Ly

2

2

2 y  denoting 

the downside standard semi-deviation of every . Thus, for symmetric 
pay-offs (or returns, or final wealth), if we solve (1) with  then we 

will have 202 y  D.

5.2. More generally, let as consider the integer  such that s sp , the 
deviations

ss
s yyEEy

/1

and the downside s semi-deviation 
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ss
s yyEEy

/1
.

Since s  is lower range dominated, similar arguments as above permit us to 

show that 0ys  D always holds if Yy0  solves (1) with s ,
and

s
s y /1

0 2  D                                                                      (13) 

holds if Yy0  solves (1) with s  and every Yy  is symmetric.  

5.3. It is known that for 1s  the absolute deviation and downside semi-
deviation satisfy yy 11 2  for every 1Ly  (recall that the 
expression holds even for non-symmetric random variables). Thus, 
if Yy0  solves (1) with 1 , then

201 y  D 
holds, despite 1  is not lower rage dominated in general and 0y  does not 
have to be symmetric.                                                                                                                  

IV. Upper bound improvements 

This section will be devoted to improve the upper bounds above under 
special assumptions. In particular, we will consider those cases for which 

LY  (regardless of the value of ),1[p ) or 2qp .9

Next we will provide a first result applying when one is dealing with a 
essentially bounded attainable wealth. Since pLL  the particular case 

LY  may appear in practice. It is worth to recall that the dual space of 
L , that we will denote by , is composed of those finitely additive 
measures :z  that are continuous (i.e.,

AAzA ,00 ) and have finite variation (Luenberger, 1969, 

9 Many actuarial and financial practical problems may be studied in a L  framework. See for instance 
De Waegenaere and Wakker (2001) or Castagnoli et al. (2004). 



Alejandro Balbás, Beatriz Balbás and Antonio Heras

or Anderson and Nash, 1987). If  and Ly z  then yz,  will 
denote the “standard product” of  and y z .

Lemma 6. The set 

~ 1,,0: zzzR 1                                                        (14) 

is convex and L, -compact. 

Proof. The convexity of R
~

 may be easily proved, so let us see its 
compactness. Since it is clearly L, -closed the Alaoglu’s Theorem 

(Luenberger, 1969) shows that it is sufficient to prove that R
~

 is norm 
bounded. If z ,  and 0z 11,z  then we have that 1,1 yz

for every  in the unit ball of  (since Ly L 11 y ). Then 
obviously belongs to the unit ball of the space .                          

z

Theorem 7.  If LY  then M  and D .

Proof.  We will only prove the inequality M  since the other one is 
similar. Define 

RzyR yzMax ~~ :,

for every . The previous lemma guarantees the consistency of the 
above definition. Then, Problem  

Ly

Yy
jbyqE

zyz
Min

jj

,

0,
m

R

,...,2,1

~,

satisfies the Slater Qualification. Indeed, take the element Yy1  with 

jj bqyE 1 , mj ,...,2,1  (see Assumption 1), and 1  with  
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RzyzMax ~:, 11

whose existence trivially follows from the previous lemma. Therefore, the 
usual duality theory in Banach spaces for convex problems (Luenberger, 
1969) ensures that its dual problem 

R
m

j

Y

m

j
jj

m

j
jj

P
mj

dEq

bMax

R

~,
,...,2,10

0
1

~

1

is bounded from above (if it is not feasible then its value will be ). Here 
the second constraint means that  

R

zdyzyqE
m

j
jj ~

1
0,

holds for every Yy . Since the trivial immersion  transforms 

in a subset of 

qL R

R
~

 it is clear that every inner regular with pLqL , -

compact support probability measure  on R  may be extended to R
~

, i.e.,  
the feasible set of Problem (8) may be embedded in the feasible set of the 
problem above. Thus, Problem (8) is bounded.         

Throughout the rest of this section we will assume that 2qp  and Y  is 
included in a finite-dimensional subspace . The second property 
frequently holds. For instance, if we deal with a static (one period) model 
and the reachable pay-offs are those generated by combinations of a finite 
set of available assets. 

2LL

Let us denote by  
LL2:

the standard orthogonal projection. We will consider the set  

RR Cl
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Cl  denoting closure. Notice that the closure may be computed in the norm 
topology of  because this space has a finite dimension (Luenberger, 1969).  L

Note that

zyEyzE                                                                                    (15) 

for every LYy  and every 2Lz  because Lzz , orthogonal 
of . Whence, following the notations of (12), L

RR zzyESupzyzESupyR :: .      (16)             

We will denote by M* and D* the optimal values of (8) and (9) respectively 
if  is replaced by . Obviously, if we are under the assumptions of 
Lemma 2 and Remark 3 and therefore 

R R

R  is 22 , LL -compact then 
will be compact too, but the converse does not necessarily holds.  

R

Theorem 8. If  is compact then M*R  and D* . Furthermore, if 
 solves (1) and Yy0  is a coherent and expectation bounded risk 

measure (respectively, a lower range dominated deviation measure) then the 
inequality  

0y  M* 

(respectively 0y  D*) holds.10

Proof. Once again we will only prove that M*  and 0y  M*. First 
of all note that (16) leads to 

RR zzyEMaxzyzESupyR :: .

According to Assumption 1, there exists Yy1  with jj byqE 1 ,

 and the compactness of  guarantees the existence of mj ,...,2,1

1

R

 with 

                                                
10 An analogous to Remark 5 also applies here. 
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RzzyEMax :11 .

Hence, Problem 

Yy
mjbyqE

zzyE
Min

jj

,
,...,2,1

,0

satisfies the Slater Qualification and its dual achieves its optimal value 
M*  (unless it is unfeasible in which case M* ). Moreover (15) 
shows that (1) is equivalent to (4) once  replaces  (notice that 

 is compact) and the Slater Qualification shows that its dual 

achieves the optimal value 
R

0y . Since every inner regular probability 

measure on  may be obviously extended to  the inequality R

0y  M* becomes obvious.                                                                    

As already said Y  will be included in a finite-dimensional space  if we 
deal with a one period model and there is a finite set of available securities 
whose pay-offs are 

L

nyyy ,...,, 21 . Suppose that the risk free asset is also 
available, i.e., suppose that (almost surely) constant functions are in Y .
Then (15) leads to  

zEzE                                                                                    (17) 

for every 2Lz . In particular  

1zE                                                                                               (18) 

for every . Then we have: Rz

Corollary 9. Suppose that  is the linear manifold generated by an 
orthogonal system 

L
2

21 , Lyyy n,..., . If (almost surely) constant 

functions are in Y then  is compact and the previous theorem applies. R
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Proof. Since  is obviously closed we only must prove that it is bounded. 
All the norm topologies in  are equivalent (Riesz Theorem, see 
Luneberger, 1969), so it is sufficient to see that  is bounded in the 

. Owing to (18) this property would be obvious if we were able to 
show that  is included in the positive cone , and more easily, it is 
sufficient to see that 

R

R

L
R

normL1

2L

R
2L . Since System 2

2 ,..., Lyy n1 ,y  is 
orthogonal we have that 

j

m

j j

j y
y
zyE

z
1

2

for every 2Lz , so 2Lz
2L

 if  because all the terms in the 
expression above are in .

2Lz

                                                                            

V. Convex constraints 

As said in the introduction Balbás et al. (2009) have provided 
complementary slackness necessary and sufficient optimality conditions that 
apply for all the dual pairs of linear problems presented in this paper. 
Moreover they developed a simplex-like algorithm that applies for most of 
the dual problems.  

On the other hand, in practice, the restrictions of Problem (1) will be usually 
related to minimum required expected returns, budget constraints, short-
sales, etc. If the market reflects frictions then some of these constraints will 
give up being linear, though most of them will be still convex. Convex 
pricing rules in finance or insurance have been studied, for instance, in 
Wang (2000), De Waegenaere and Wakker (2001) or Hamada and Sherris 
(2003) (see also Castagnoli et al., 2004). Thus, Problem (1) may be extended 
so as to get 

Yy
mjbyG

yMin

jj ,...,2,1,                                        
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mGGG ,...,, 21  being real valued and continuous convex functions on Y . It 
is straightforward to obtain the natural extensions of Problems (4) and (5). 
Thus, bearing in mind the Duality Theory for Convex Optimization 
Problems of Luenberger (1969), if every  is positively homogeneous,jG 11

then

P
mj

dEG

bMax

m
j

Y

m

j
jj

m

j
jj

,
,...,2,10

0
1

1

becomes the dual of (4), and a similar modification applies for (5) as well. 
Here the second constraint above means that 

0zdyzEyG jj

holds for every .Yy  The necessary and sufficient optimality conditions of 
Balbás et al. (2009) may be also extended to the present case (see also 
Balbás, 2007), though it will be more difficult to use the new version in 
practice. The simplex-like algorithm will not apply anymore, but alternative 
convex-linked algorithms could be used. Besides, many theoretical results 
stated in Sections III and IV may be generalized so as to cover the convex 
case.

VI. Stability of the optimal solution 

Let us deal again with the linear problem. Another important topic is related 
to the stability of the solution Yy0  of (1) with regard to the risk function 

.

Proposition 10. Suppose that RP,  solves (8) (respectively, 
(9)). Then the solution Yy0  of (1) and the optimal risk value 0y  will 

                                                
11 i.e., ,yGyG jj ,,...,2,1 mj ,0 .Yy
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be the same for every coherent and expectation bounded risk measure 
(respectively, lower range dominated deviation measure)  such that 

,Sp Sp  denoting the support of . 12

Proof. As usual, we will deal with the coherent and expectation bounded 
case. If  then Sp P,  obviously solves (6) and the 
absence of duality gap guarantees that  

1
0

m

j
jby .j

j

Furthermore, the complementary slackness conditions (Anderson and Nash, 
1987 or Balbás et al., 2009) between (4) and (6) prove that system  

b

j

m

j
j

1

Yy
myqEb

zdzyE

jj

j
R

0

0

0

,...,2,1,0

along with the restrictions of (1) characterize the solution of (1), and this 
whole system does not depend on .                                                                                         

Remark 11. 11.1. Following Balbás et al. (2009) it may be proved that 
Sp  is finite under quite general conditions. Moreover, if the set Sp  is 
finite then we can modify  so that Sp  can become a singleton. Indeed, 

suppose that  Then we can consider that 
k

i
zi i

t
1

.,...,,1 kzz 2zSp ,

 denoting the usual Dirac delta that concentrates the total mass on ,

 (i.e.,
iz

iz

ki ,...,2,1 1izi ). Since  is a probability measure we have that 

, , and  Since 
k

i
t

1
i .10it i 2,1 k,..., R  (respectively, ) is convex 

                                                
12 See Luenberger (1969) for a complete definition of Sp .
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we obviously have that  (respectively, ).

Furthermore, 

R

k

i
ii ztz

1
0

tyzE
k

i
iz

1
00

, R

k

i
ii ztz

1
0

dyzEyzEdyzE i

holds for every  where pLy  (respectively, ). Now it is 

obvious that 
0z  may play the role of  in Problems (8) or (9) (respectively, 

(6) or (7)). 

As a consequence of the analysis above the conditions of Proposition 10 may 
be more easily verified in practice. Indeed, we have: 

Theorem 12.  If 
0

, z  solves (8) (or (9)) then Problem (1) has the same 
solution and the same optimal value for every coherent and expectation 
bounded risk measure (or lower range dominated deviation) such that 

 Moreover, the solution  of (1) is characterized by system .0z 0y

mj

0

,...,2,1,0
Yy
yqEb

zyEb

jjj

jj

0

0

0 ,

                                       (19) 

along with the constraints of (1) if  is a coherent and expectation bounded 
risk measure, whereas the system becomes 

mj ,...,2,1,0

1

Yy
yqEb

zyEb

jjj

m

j
jj

0

0

1
00

                                    (20) 

if  is a lower range dominated deviation.                                                                     
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VII. Actuarial and financial examples

As already said, many financial and actuarial problems may be studied by 
minimizing general risk functions. Since many references have been given, 
in this section we will just present two illustrative examples, and the 
interested reader may consult the cited references. Our first example will 
illustrate an application in finance, whereas the second one will deal with a 
classical actuarial topic. Both problems will be almost similar to Problem 
(1), but not identical, so some minor modifications of the statements in this 
article should be implemented in order to deal with the two proposed 
optimization problems. However, since these modifications are 
straightforward, we will not address them.  

It is known that in an incomplete financial market many new pay-offs cannot 
be replicated and, consequently, they cannot be priced with a perfect 
hedging. An alternative may be to fix p  and , containing the sub-space pL
Y  of attainable pay-offs, and the risk function  to be used. 
Then, if  is the new security to be priced, and the trader buys 
so as to protect the sale of 

pL:
Yg Yy

g , he/she can sell g  for euros and then find 
the optimal hedging strategy by solving 

gP

Yy
PyqE

gyMin

g

where  is the Stochastic Discount Factor that applies to price those pay-
offs belonging to 

q
Y , i.e., qyE

q
 is the market price of every reachable pay-

off . The existence of  is guaranteed if, as usual, we impose the 
absence of arbitrage in the market (see,  for instance, Cochrane, 2001, for 
further details about the notion of Stochastic Discount Factor). Once the 
problem above is solved we have the optimal risk level according to the 
measure 

Yy

, as well as the optimal hedging strategy .Yy  Thus, if  is a 
coherent and expectation bounded risk measure, then the theory developed in 
this article permits us to know whether the computed values of the risk level 
and the hedging strategy are stable or sensitive when one modifies .

As a final comment, let us remark that the optimal hedging problem above 
may be interesting in Actuarial Mathematics as well. For instance, in order 
to price equity indexed annuities (or unit-links), since these products are 
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always related to incomplete markets (even if the annuities are linked to a 
complete financial market, the global market is not complete due to the 
stochastic behavior of mortality and survival). 

The optimal reinsurance problem is “classical” in Actuarial Mathematics. 
Recent approaches may be found in Young (1999) and Kaluszka (2005), 
among others.  

In general, suppose that is the (random) total amount that an 
insurance company will pay within a planning period. Suppose also that a 
reinsurance contract is accepted in such a way that  and 
will be the (random) amounts paid by insurer and re-insurer, respectively. 
Suppose finally that insurer and re-insurer apply the Expected Value 
Principle, and take k  the proportion of the Pure Premium that they use in 
order to price (if the proportions are different then it is easy to see that we 
may only consider that proportion used by the re-insurer). Then the final 
wealth of the insurer will be 

pLy0

pLy pLyy0

1

yykE ,

so, if  is the minimum required pure premium, then the insurer will 
choose

0S
y  so as to solve 

0

0

y
SyE

yy
yykEMin

 being the applied risk function. Once again the developed theory may 
clarify whether the optimal reinsurance y  and the optimal risk level 

yykE  are really sensitive with respect to .

VIII. Conclusions 

Many financial or insurance problems have been recently revisited by 
drawing on more general risk functions. Amongst them, one can consider 
usual pricing, hedging or portfolio choice issues, optimal reinsurance 
problems, the loaded rate of unit-links, etc.  
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Until now many different risk functions have been recently proposed and 
there are no arguments justifying that a concrete example may outperform 
the remaining ones. Besides, the result of a practical problem may critically 
depend on the risk function we are dealing with. So, for instance, if we are 
computing initial capital requirements that a fund manager must incorporate, 
the choice of the risk function is far of being an irrelevant topic. 

This paper has yielded several risk level upper bounds that apply regardless 
of the considered risk function. The methodology is general enough and 
applies for perfect or imperfect markets, static or dynamic models, pricing or 
hedging issues, portfolio choice problems, etc. Mainly, the only requirement 
is that one is optimizing a risk function to address a financial/insurance 
topic.

The stability of the optimal strategy with respect to the chosen risk function 
has also been studied, and illustrative practical examples have been 
provided.   
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