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Abstract. We consider a capital-exchange agreement, where two insurers 
recapitalize each other in certain situations with funds they would otherwise 
use for dividend payments. We derive equations characterizing the expected 
time of ruin and the expected value of the respective discounted dividends 
until ruin, if dividends are paid according to a barrier strategy. In a Monte 
Carlo simulation study we illustrate the potential advantages of this type of 
collaboration. 

 1) Introduction 
 
The identification of dividend payout strategies that balance safety and 
profitability is a classical topic of insurance risk theory. Whereas ruin theory 
focuses on the safety aspects (see e.g. Asmussen and Albrecher [2] for a 
survey), the de Finetti problem of maximizing expected discounted 
dividends over the lifetime of an insurance portfolio concentrates exclusively 
on the profitability aspect (see e.g. Azcue and Muler [4] for a recent 
overview of control problems arising from that). For control problems that 
address a balancing of the time of ruin against early dividend pay-outs, see 
e.g. [12,13] and, in the form of a constraint on the ruin time, [11]. At the 
same time, there have recently been some research efforts to address the 
analysis of several surplus processes simultaneously, see e.g Chan et al. [7], 
Cai and Li [6], Gong et al. [10] and Avram et al. [3] on ruin-related 
measures and Badescu et al. [5] for a capital allocation problem. It is a 
natural question in this context whether certain forms of collaboration 
between two different companies can lead to a better overall profit and 
safety compromise than what the two can optimally achieve stand-alone.  
Gerber and Shiu [9] discuss the effects of merging two portfolios on optimal 
dividends according to barrier strategies, and Albrecher,  Azcue and Muler 
[1] recently identified the optimal dividend strategy when two companies 
pay each other's deficit as long as it can be afforded. 
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In this paper we look at a different type of collaboration between two 
companies: whenever a company is in a sufficiently comfortable position to 
pay out capital, it first helps the other company to reach a well- apitalized 
position before it starts to pay out dividends to shareholders.  Such a 
collaboration strategy clearly has a smoothing effect on the survival of both 
companies, while dividends are still paid out if the overall situation is 
sufficiently favorable. Within the family of barrier dividend strategies we 
look at the effects of such a type of collaboration on the expected ruin time 
and the resulting expected discounted dividend payments.  

  
Section 2 introduces the model assumptions in detail. In Sections 3 and 4, we 
derive equations which are satisfied by the insurer's expected time of ruin 
and the expectation of the discounted dividends, respectively, under the 
capital-exchange agreement. In Section 5, we provide an efficient Monte 
Carlo algorithm which we apply in a simulation study. Finally, we aim to 
illustrate some decision criteria for when to enter such a capital-exchange 
agreement. 

  

 2) The Model 

 
Let 

1I  and 
2I  be two insurers, and initially consider the situation where their 

surplus processes ( )iC t , 1,2i  , are independent and each surplus follows 

a Cramér-Lundberg process,  

   

                                                ( ) ( ),i i i iC t x c t S t                                             (1) 

     

where 
ix   is the insurer's initial surplus, 

ic  is the premium (income) rate, 

and ( )iS t  is a compound Poisson process, representing the aggregate claims 

of 
iI  up to time t , with rate 

i  and individual claim size distribution 

function ( )
iYF y  (density function ( )

iYf y respectively). 

 
We now adjust this framework as follows. The two insurers enter into a 
capital exchange agreement, and each insurer sets a respective barrier 

ib . 

Like under a classical dividend barrier strategy, 
iI  fully pays out its income 

as long as its current surplus is at barrier 
ib  (i.e. the surplus process of 

iI  is 
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reflected at 
ib ). The capital-exchange agreement now defines that these pay-

outs go to the other insurer if the surplus of that one is below its barrier level, 
and otherwise to the own shareholders in the form of dividends. Note that 
such a capital-exchange agreement introduces dependence on the adjusted 
surplus processes of the two insurers. 
 
Let ( )iD t  be the aggregate dividend payments at time t  of insurer i  , and 

( )iA t  are the aggregate payments insurer 
iI  has paid to the partner 

company under the agreement by time t . The adjusted surplus ( )iU t  of 

insurer i  is then given by  

 
1 1 1 1 2

2 2 2 2 1

( ) ( ) ( ( ) ( )) ( ),

( ) ( ) ( ( ) ( )) ( )

U t C t D t A t A t

U t C t D t A t A t

   
   

 

 
and we can write the dynamics as  

 
1 1 1 1 1 2

2 2 2 2 2 1

( ) ,

( ) .

dU t c dt dS dD dA dA

dU t c dt dS dD dA dA

    
    

 

 
The time of ruin of insurer i  in this framework can then be defined as a 
function of the two initial surplus levels and the barrier heights, and we write 

 
    

1 2 1 2 1 1 2 2 1 2( , , , ) inf{ | ( ) 0; (0) , (0) , , }.i ix x b b t U t U x U x b b       (2) 

 
We define that the capital-exchange agreement ceases to exist once one of 
the two insurers is ruined, and the surviving insurer keeps operating its 
dividend barrier strategy with barrier 

ib  on a stand-alone basis. 
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1 2Figure 1: Sample path of (U ,U )  
 
Figure 1 depicts a sample path of  

1U  ,
2U . Up to time 

3t  , both adjusted 

surplus  processes run below their respective pay-out barriers 
1b  and

2b  , and 

the slope is 
1c  and

2c  , respectively. At time
3t , 

2U  reaches its pay-out 

barrier 
2b . Income at rate 

2c   is from now on paid to the partner insurer 

(who now has an income rate of 
1 2c c ) up to time 

4t  where also 
1I  

reaches its pay-out barrier 
1b  . Between times 

4t   and 
5t , any income is paid 

to the respective shareholders as dividends, because both adjusted surpluses 
now run at their pay-out barriers. At time

5t  , a claim pulls the adjusted 

surplus of 
2I  below 

2b  , so that it is now supported by 
1I  up to time 

7t  

(during this period 
2I  has an income rate of 

1 2c c ). Finally, at time 
8t ,

2I
suffers a large claim and is ruined. The capital-exchange agreement ceases to 
exist, and 

1I  continues on its own. It now pays dividends whenever its 

adjusted surplus is at 
1b  (between times 

9t  and 
10t ) and is ruined once its 

adjusted surplus drops negative (at time
10t ). 
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One observes that money is now generally kept longer in the system of the 
two insurers, as it is only released to shareholders once the adjusted 
surpluses of both insurers run at their respective barriers. Intuitively one 
expects this to have a positive impact on the lifetime, while the impact on 
expected dividends is not so obvious. In particular, a weak capital-exchange 
partner would most likely have a negative impact on dividend payments, 
while a strong partner might help to lift one's adjusted surplus faster so that 
dividend payments might (re-)start at an earlier time. 
 
While the setup of the dependence structure is fairly straightforward to 
introduce, the implied mathematics are found to be challenging. Practically, 
the capital-exchange feature of the presented model can be extended to the 
case of n   insurers, having in mind a holding company (HoldCo - for 
example, a financial investor) that owns a number of separate insurance 
undertakings, where well-performing entities support underperforming ones. 
Dividend payments at the HoldCo level are then only made if all entities are 
sufficiently well capitalised (as defined by their respective barriers 

ib ). The 

HoldCo could then assess such a capital exchange strategy by balancing the 
effects on the default risk and the dividend income, depending on the risk 
willingness of its shareholders. Note that within a classical insurance group, 
dividend clawback rules and financial assistance requirements might restrict 
the choice of implementable capital-exchange mechanisms as outlined here. 
 

 3) The Expected Time of Ruin 
 
We observe that the surplus process 

iU is bounded from above by the 

otherwise identical surplus process with income rate 
1 2c c , adjusted by a 

dividend barrier strategy with barrier 
ib , and conclude from the fact that 

Cramér-Lundberg-type surplus processes under a barrier strategy with finite 
barrie b  have ruin probability one, that also 

1 2 1 2[ ( , ; , ) ] 1i x x b b   P  

for 1,2i  . Hence, we turn to an alternative measure of risk. We assume the 

pay-out barriers 
1b  and 

2b  as fixed and define the expected time of ruin of 

insurer i  as a function of the initial surplus levels  

 
                                

1 2 1 2( , ) [ ( , )].i ix x x x  E                                                       (3) 
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We restrict the support of 
1 2( , )i x x  to 0 ,  1,2i ix b i    (the 

situations 
1 1x b  or 

2 2x b   can be related to the considered case by 

defining how initial immediate lump sum payments are made to capital 
exchange partners and shareholders). Let us focus on the expected time of 
ruin for 

1I  (by symmetry the situation of 
2I  follows analogously). 

 
Conditioning on the first arrival of a claim from either 

1S  or 
2S  within h  

time units (for h  sufficiently small) and exploiting the Markov property of 
the bivariate process 

1 2( , )U U  gives the following equations for , 0i ix b  . 

In particular, for the interior points, 
1 1x b , 

2 2x b  : 

 






1 2

1 1
2 1

1

1

2 2
1 2

2

2

( )
1 1 2 1 1 1 2 2

1 1 1 1 2 20 0

1 1

2 1 1 1 2 20 0

(0)
1 1 1 2

( , ) ( ( , ))

( ( , )) ( )

(1 ( ))

( ( , )) ( )

( ( )) (1 (

h

h x c tt t
Y

Y

h x c tt t
Y

Y

x x e h x c h x c h

e e t x c t z x c t f z dz

t F x c t dt

e e t x c t x c t z f z dz

t x c t F x

 

 

 

 

 

 



 

 

 

   

    

   

    

     

 

 
2 )) ,c t dt

(4) 
 

where (0)
1 ( )x  is the expected time of ruin of 

1I  in the (classical) stand-

alone case with initial surplus x . 
 
Remark 1. In the case of exponential jump sizes with mean

1 1[ ] 1 /Y E  , 

the expected time of ruin (0)
1 ( )x  in the classical case is known explicitly 

(cf. Gerber (1979), p.150) as 

 

                  
1

(0)1 1
1 1

1 1 1

1
( ) ,

Rb
Rxe

c x e x
R R

 
  

   
           

         (5) 
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where 1
1

1

R
c

    is the adjustment coefficient. 

 
Furthermore, we find for the boundary  

1 1x b , 
2 2x b : 

 





1 2

1
2 1

1

1

2 1 2
1 2

2

2

( )
1 1 2 1 1 2 1 2

1 1 1 2 1 20 0

1

( )

2 1 1 2 1 20 0

(0)
1 1 2 1

( , ) ( ( , ( ) ))

( ( , ( ) )) ( )

(1 ( ))

( ( , ( ) )) ( )

( ( )) (1 ( (

h

h bt t
Y

Y

h x c c tt t
Y

Y

b x e h b x c c h

e e t b z x c c t f z dz

t F b dt

e e t b x c c t z f z dz

t b F x c

 

 

 

 

 

 



 

 

  

   

    

  

    

     

 

 
2 ) )) ,c t dt

 (6) 

 
for the boundary 

1 1x b  ,
2 2x b : 

 






1 2

1 1 2
2 1

1

1

2
1 2

2

( )
1 1 2 1 1 1 2 2

( )

1 1 1 1 2 20 0

1 1 2

2 1 1 1 2 20 0

(0)
1 1 1 2

( , ) ( ( ( ) , ))

( ( ( ) , )) ( )

(1 ( ( ) ))

( ( ( ) , )) ( )

( ( ( )

h

h b c c tt t
Y

Y

h bt t
Y

x b e h x c c h b

e e t x c c t z b f z dz

t F x c c t dt

e e t x c c t b z f z dz

t x c c

 

 

 

 

 

 



 

  

 

   

    

    

    

   

 

 


2 2)) (1 ( )) ,Yt F b dt 

(7) 

   

and in the corner point 
1 1x b  ,

2 2x b : 
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1 2

1
2 1

1 1

2
1 2

2

2

( )
1 1 2 1 1 2

1 1 1 2 10 0

2 1 1 20 0

(0)
1 1 2

( , ) ( ( , ))

( ( , )) ( ) (1 ( ))

( ( , )) ( )

( ( )) (1 ( )) .

h

h bt t
Y Y

h bt t
Y

Y

b b e h b b

e e t b z b f z dz t F b dt

e e t b b z f z dz

t b F b dt

 

 

 

 

 

 



 

 

 

 

     

  

   

 

 

  
 
The function 

1  is continuous in the interior of  
1 2[0, ] [0, ]b b  , which 

can be seen by approaching 
1 2,x x  from arbitrary directions by taking 

1 1x x j h    and
2 2x x k h   , with ,j kR  , and letting 0h   in 

(4) in each case. Comparison of (6) and (7) with (4) furthermore shows 
continuity at the boundaries 

1 1x b  and 
2 2x b . 

 
Differentiating (4) w.r.t. h , we observe by symmetry that 

1  is also 

differentiable w.r.t. 
1 2,x x  in the interior. Applying the operator /d dh  to 

all of the above conditions and taking the limit 0h   , we obtain a system 
of integro-differential equations, 
   

 
1

1

2

2

1 1
1 1 2 2 1 2 1 1 2 1 1 2 2 1 2

1 2

1 1 1 20

(0)
2 1 1 2 1 1 20

, 0 ( ) ( , ) 1 ( , ) ( , )

                            ( , ) ( )

                            ( , ) ( ) ( ) (1

:

( )) ,

x

Y

x

Y Y

x b x b x x c x x c x x
x x

x z x f z dz

x x z f z dz x F x

   

 

  

 
       

 

 

    





 

(8) 
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1

1

2

2 2

1
1 1 2 2 1 2 1 1 2 1 2 1 2

2

1 1 1 20

(0)
2 1 1 2 1 1 20

, : 0 ( ) ( , ) 1 ( ) ( , )

                            ( , ) ( )

                            ( , ) ( ) ( ) (1 ( )) ,

b

Y

x

Y Y

x b x b b x c c b x
x

b z x f z dz

b x z f z dz b F x

  

 

  


        



  

    





 

   

(9) 

 
1

1

2

2 2

1
1 1 2 2 1 2 1 1 2 1 2 1 2

1

1 1 1 20

(0)
2 1 1 2 1 1 20

, : 0 ( ) ( , ) 1 ( ) ( , )

                            ( , ) ( )

                            ( , ) ( ) ( ) (1 ( )) ,

x

Y

b

Y Y

x b x b x b c c x b
x

x z b f z dz

x b z f z dz x F b

  

 

  


        



 

    




 

 (10) 

   
and again an equation in the corner point

1 2( , )b b ,  
 

 
1

1

2

2 2

1 2 1 1 2

1 1 1 20

(0)
2 1 1 2 1 1 20

0 ( ) ( , ) 1

( , ) ( )

( , ) ( ) ( ) (1 ( )) .

b

Y

b

Y Y

b b

b z b f z dz

b b z f z dz b F b

  

 

  

   

  

     





 (11) 

   
 
Continuity of 

1 1 2( , )x x   on the boundaries 
1 1x b  or 

2 2x b  and 

comparing (8) to (9) and (10), gives the boundary conditions  

      

                 1 1
1 2 1 2 2 2

1 2

( , ) ( , ) 0 ,b x b x x b
x x

  
   

 
                                    (12)   

             1 1
1 2 1 2 1 1

1 2

( , ) ( , ) 0 .x b x b x b
x x

  
   

 
                                  (13) 
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Similarly, approaching 
1 2( , )b b   from interior points gives  

1 1
1 1 2 2 1 2

1 2

( , ) ( , ) 0c b b c b b
x x

  
 

 
,     so that we have 

1 1
1 2 1 2

1 2

( , ) ( , ) 0b b b b
x x

  
 

 
 

 
Altogether 

1 1 2( , )x x  is characterised as the solution to the equation system 

(8) with boundary conditions (12) and (13). 
 
Exponential claims. Assume that the claim sizes of 

1I  are i.i.d. Exp
1( )   

distributed, and the claim sizes of 
2I  are Exp

2( )  distributed. Applying the 

operator  1 1/d dx   followed by the operator  2 2/d dx   to (8) 

yields a third-order PDE with constant coefficients, 
 

1 1 2 1
1 2 2 1 1 1 2 1 2 2 1 2

1 1 1 2 2 2

2
1 2 1

1 1 2 2 1 2
1 1 2 2 1 2

2 2
1 1

1 2 1 2 2 1 1 22 2
1 2

3
1

1 1 22
1 2

0 1 ( , ) 1 ( , )

  1 1 ( , )

  ( , ) ( , )

 ( ,

c x x c x x
c x c x

c c x x
c c x x

c x x c x x
x x

c x x
x x

        
 

   
 

  



    
           
     

             
 

 
 




 

3
1

2 1 22
1 2

) ( , ),c x x
x x




 
    

(14) 

 
so that the dynamics in the interior are now described locally. One observes 
that 

1 2 1 1 2 2( , )p x x A x A x    with the condition 

   
1 1 2 21 1 1 11 / /c A c A       is a particular solution to this 

inhomogeneous PDE. Terms of the form 1 2rx sxe e   can appear in the solution 
to the homogeneous problem if they fulfil the characteristic equation  
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1 2
2 1 1 1 2 2

1 1 2 2

1 2
1 1 2 2

1 1 2 2

2 2 2 2
1 2 2 1 1 2

0 1 1

  1 1

  .

c r c s
c c

c c rs
c c

c r c s c r s c rs

    
 

  
 

 

   
       

   
    

       
    

   

                (15) 

 
A plot of (15) for a particular choice of parameters is shown in Figure 2.  

 

 
 

1 2 1 2 1 2F ig u re  2 : P lo t o f th e  im p lic it eq u a tio n (1 5), w ith  c = c = 6 ,  = = 5  an d  = = 1   

 
While it turns out to be mathematically intricate to obtain an explicit solution 
for 

1 1 2( , )x x  (which must also match the original IDE (8) - note that some 

terms cancelled when applying the differential operator, which now need to 
be recalibrated by a suitable combination of homogeneous solutions - and 
the boundary conditions), the above characterisation may be useful for 
setting up a numerical solution procedure or also a hybrid numerical 
procedure, where finite-difference methods are applied after simulating the 
boundaries, with the aim of achieving an improvement in run time over 
crude Monte Carlo simulation. 
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 4) The Expected Sum of Discounted Dividends 
 

Apart from the prolonging effect of the capital-exchange agreement on the 
expected time until ruin, we are interested in how the expected sum of 
discounted dividends until ruin is affected. We hence define  
 

                                          
1 2 1 2( , ; , )iV x x b b                                            (16) 

 
as the expectation of the sum of discounted dividends until ruin paid to the 
shareholders of

iI , where we use a constant force of interest 0   for 

discounting. In the following we will assume that the pay-out barriers have 
been set and, thus, use the shortened notation

1 1 2 1 1 2 1 2( , ) ( , ; , )V x x V x x b b .  

 
Proceeding as in Section 3, one can again condition on the occurrence of a 
jump event within h  time units, h  sufficiently small, to find that for the 
interior points

1 1x b ,
2 2x b  :  

 

 




1 2

1 1
2 1

1

2 2
1 2

2

2

( )
1 1 2 1 1 1 2 2

1 1 1 1 2 20 0

2 1 1 1 2 20 0

(0)
1 1 1 2 2

( , ) ( , )

( , ) ( )

( , ) ( )

( )) (1 ( ) ,

h h

h x c tt t t
Y

h x c tt t t
Y

t
Y

V x x e e V x c h x c h

e e e V x c t z x c t f z dz dt

e e e V x c t x c t z f z dz

e V x c t F x c t dt

  

  

  







  

  

  



  

   

   

    

 

 

(17) 

 
where (0)

1 1( )V x  is  the stand-alone expectation of the sum of discounted 

dividends. 
 
Remark 2. In the exponential claim size case with

1 1[ ] 1 /Y E  , the 

expectation of the sum of discounted dividends in the classical case has an 
explicit form (cf. [8], p.183), 

                   
1 1 2 1

1 2

(0) 1 1 1 2
1 1 1

1 1 1 2 1 2

( ) ( )
( , ) ,

( ) ( )

r x r x

r b r b

r e r e
V x b

r r e r r e

 
 
  


  

                (18) 
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where 
1r  and 

2r  are the solutions to the equation  

                2 1 1
1

1 1

0.
c c

     
 

    
 

    (19) 

 
Similarly it follows for the boundary

1x b ,
2 2x b  : 

 
 

 




1 2

1
2 1

1

2 1 2
1 2

2

2

( )
1 1 2 1 1 2 1 2

1 1 1 2 1 20 0

( )

2 1 1 2 1 20 0

(0)
1 1 2 1 2

( , ) ( , ( ) )

( , ( ) ) ( )

( , ( ) ) ( )

( ) (1 ( ( ) )) ,

h h

h bt t t
Y

h x c c tt t t
Y

t
Y

V b x e e V b x c c h

e e e V b z x c c t f z dz dt

e e e V b x c c t z f z dz

e V b F x c c t dt

  

  

  







  

  

   



  

   

   

    

 

 

 

(20) 

 
for the boundary  

1 1x b  ,
2 2x b  : 

 

 




1 2

1 1 2
2 1

1

2
1 2

2

2

( )
1 1 2 1 1 1 2 2

( )

1 1 1 1 2 20 0

(0)
2 1 1 1 2 20 0

(0)
1 1 1 2 2

( , ) ( ( ) , )

( ( ) , ) ( )

( ( ) , ) ( )

( ( ) )) (1 ( )

h h

h b c c tt t t
Y

h bt t t
Y

t
Y

V x b e e V x c c h b

e e e V x c c t z b f z dz dt

e e e V x c c t b z f z dz

e V x c c t F b dt

  

  

  







  

   

  



  

   

   

    

 

 

(21) 
and in the corner point we obtain 
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1 2

1
2 1

1 1

2
1 2

2

2

( )
1 1 2 1 1 1 2

1 1 1 1 2 1 10 0

2 1 1 1 20 0

(0)
1 1 1 2

( , ) ( ) ( , )

( ) ( , ) ( ) ( ) (1 ( ))

( ) ( , ) ( )

( ) ( ) (1 ( )) ,

h h

h bt t t
Y Y

h bt t t
Y

t
Y

V b b e v h e V b b

e e v t e V b z b f z dz v t F b dt

e e v t e V b z b f z dz

v t e V b F b dt

  

  

  







  

  

  



 

     

  

   

 

 

 

(22) 

where 1
1 10
( ) (1 )

t s tc
v t c e ds e 


     is the present value of the 

discounted dividends paid at rate 
1c  over [0, )t . 

 
By the same line of argument as in Section 3, one sees that 

1 1 2( , )V x x   is 

continuous for all
1 2 1 2( , ) [0, ] [0, ]x x b b  . Given differentiability w.r.t. 

h , by symmetry we can establish differentiability of 
1V  w.r.t. 

1 2,x x . 

Applying again the operator /d dh   to each equation and letting 0h   
yields, 

 
1

1

2

2 2

1 1
1 1 2 2 1 2 1 1 2 1 1 2 2 1 2

1 2

1 1 1 20

2 1 1 2 1 20

, : 0 ( ) ( , ) ( , ) ( , )

                            ( , ) ( )

                            ( , ) ( ) ( ) (1 ( )) ,

x

Y

x

Y Y

V V
x b x b V x x c x x c x x

x x

V x z x f z dz

V x x z f z dz V x F x

  





 
       

 

 

    




(23) 

 

 
1

1

2

2 2

1
1 1 2 2 1 2 1 1 2 1 2 1 2

2

1 1 1 20

2 1 1 2 1 20

, : 0 ( ) ( , ) ( ) ( , )

   ( , ) ( )

   ( , ) ( ) ( ) (1 ( )) ,

b

Y

x

Y Y

V
x b x b V b x c c b x

x

V b z x f z dz

V b x z f z dz V b F x

  






        



  

    




(24) 
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1

1

2

2 2

1
1 1 2 2 1 2 1 1 2 1 2 1 2

1

1 1 1 20

2 1 1 2 1 20

, : 0 ( ) ( , ) ( ) ( , )

                            ( , ) ( )

                            ( , ) ( ) ( ) (1 ( )) ,

x

Y

b

Y Y

V
x b x b V x b c c x b

x

V x z b f z dz

V x b z f z dz V x F b

  






        



 

    




 

(25) 

   
and we obtain an equation in the corner point 

1 1x b  ,
2 2x b , 

 

 

 
1

1

2

2 2

1 2 1 1 2 1

1 1 1 20

2 1 1 2 1 20

0 ( ) ( , )

( , ) ( )

( , ) ( ) ( ) (1 ( )) .

b

Y

b

Y Y

V b b c

V b z b f z dz

V b b z f z dz V b F b

  





    

  

     





 (26) 

 
As in Section 3, one can compare (23) to (24) and (25) to produce the 
following boundary conditions using the continuity of  

1 1 2( , )V x x  , 

 

       1 1
1 2 1 2 2 2

1 2

( , ) ( , ) 0 ,
V V

b x b x x b
x x

 
   

 
                        (27) 

1 1
1 2 1 2 1 1

1 2

( , ) ( , ) 0 ,
V V

x b x b x b
x x

 
   

 
                          (28) 

 
and comparing (23) to (26) finally yields in 

1 2( , )b b : 

1 1
1 1 2 2 1 2 1

1 2

( , ) ( , )
V V

c b b c b b c
x x

 
 

 
. The system of equations (23), (27) and (28) 

is solved by 
1 1 2( , )V x x . 
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Exponential claims. Again we consider the exponential claim size case with 

1 ~Y  Exp
1( )  and 

2 ~Y Exp
2( ) , and applying

1
1

d

dx


 
 

 
 , followed by 

the operator
2

2

d

dx


 
 

 
 , transforms (23) into the PDE 

    

 

1
1 2 1 1 2 1 1 2 2 1 1 2

1

1
2 1 2 1 2 1 2

2

2
1

1 1 2 2 1 2 1 2
1 2

2 2
1 1

1 2 1 2 2 1 1 22 2
1 2

3
1

1 1 2 22
1 2

0 ( , ) ( ( )) ( , )

     ( ( )) ( , )

     ( ) ( , )

     ( , ) ( , )

     ( , )

V
V x x c x x

x

V
c x x

x

V
c c x x

x x

V V
c x x c x x

x x

V
c x x c

x x

      

    

    

 


    




  



    

 

 
 

 


 

 

3
1

1 22
1 2

( , ).
V

x x
x x


 

 (29) 

   

 
In analogy to the expected time of ruin case, the dynamics of the function 

1 1 2( , )V x x   are now defined locally in the interior of 
1 2[0, ] [0, ]b b . The 

explicit solution of (29) together with the corresponding IDE and boundary 
conditions is of similar complexity as for

1 . 

 5) A Simulation Study 
 
In the following we suggest an efficient Monte Carlo algorithm to 
numerically compute 

1 1 2( , )x x  and 
1 1 2( , )V x x . We will then compare the 

results with the ones for the stand-alone case, for which explicit formulas are 
available for exponential claim sizes (cf. Remarks 1 and 2). The aim is to 
identify decision-theoretical aspects for the justification of a capital-
exchange agreement, as compared to the performance in the stand-alone 
situation. 
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5.1)  A Monte Carlo Algorithm 
 

To set up an efficient algorithm for producing MC estimates of 
1 1 2( , )x x  

and 
1 1 2( , )V x x  , we observe the following: 

 
1U  can only drop negative at a jump time of 

1( )S t , hence we only 

have to check the surplus at jump times to see when to stop the 
process. 

 In between any two claim arrivals (from either 
1S  or

2S  ), the 

surplus processes grow at constant rates 
1 1 1 2{0, , }c c c c   and

2 2 1 2{0, , }c c c c   , respectively. 

 
The Expected Time of Ruin. The two aggregate claim processes can be 
combined into one compound Poisson process with intensity 

1 2   and a 

claim 
iY  comes with probability 

1 1 2/ ( )    from 
1I  with distribution 

function 
1
( )YF y  and with probability 

2 1 2/ ( )    from 
2I  with 

distribution function
2
( )YF y . In the implementation, we hence generate 

jump times and jump sizes for this combined process. The triples 

( , , )j j j jZ t Y   reflect the claim arrival times 
jt , a marker 1j   if the 

claim is from 
1I  and 0j   otherwise, and the corresponding claim sizes 

jY . Conditioning on 
1{ }j jZ 
 we can write  

 

                     
1 1 2 1 1( , ) inf{ ( ) 0,{ } } ,j j j jx x t U t Z 

   E                     (30) 

 
with 

1 1(0)U x , 
2 2(0)U x  and the recursions conditional on no prior 

ruin of the respective process can be written as 
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2

1 1 1 1 1 1

2 2
{ } 2 1 1 1 1

2

( ) min , ( ) ( )

( )
1 ( ) min , ,

j

j j j j

j
t j j j j j j

U t b U t c t t

b U t
c t t t t Y

c 

 

    

  
  

        
  



(31) 
 

1

2 1 2 2 2 1

1 1
{ } 1 1 1 1 1

1

( ) min , ( ) ( )

( )
1 ( ) min , 1 ) .(

j

j j j j

j
t j j j j j j

U t b U t c t t

b U t
c t t t t Y

c 

 

    

  
  

         
  



(32) 
 

For a set of samples ( )
1{ }k

j jz 
 , 1 j N   , of

1{ }j jZ 
, we then simply 

compute the MC estimate of 
1 1 2( , )x x  as 

       ( )
1 1 2 1 1 1

1

1
ˆ ( , ) inf{ ( ) 0,{ } { } } ,

N
k

j j j j j j
k

x x t U t Z z
N

  


             (33) 

 
using the recursions (31) and (32). 
 
The Expected Discounted Dividends. We realise that no dividends are paid 
immediately after any claim arrival at  

jt , since either the first or the second 

surplus process will drop below its pay-out barrier due to the claim. Hence, 
over the time interval 

1( , ]j jt t 
  in between two claim arrivals, either no 

dividends are paid or dividends are paid from a certain time in
jt  over the rest 

of that interval. Furthermore, we note that for in
1j jt t  , one can write that  

                                          in1 1

in

1
1 .

j j j

j

t t ts

t

c
c e ds e e 


                                         (34) 

 
Conditioning on the claim arrivals and sizes leads to 
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1

in
1

1 1 2 1 { } 1 1 2 20

1
1

0 1 1
1

( , ) 1 (0) , (0)

             0, ,{ }j j

s
A

n
t t

n j j
j

V x x c e ds U x U x

c
e e t t Z

 

  







 




       
 

    
  





E

E

             (35) 

 

with the event

 1 1 2 2 2 1 1 2[ ( ) , ( ) , ] [ ( ) , ]A U s b U s b s U s b s        , the 

payment start times  

 
1 1 1 2 2 2 1 2in

1 1 1 1 2 j

min( max(( ( )) / ,( ( )) / ), ) if 
,

min( ( ( )) / , ) if t
j j j j j

j
j j j

t b U t c b U t c t t
t

t b U t c t








   
    

  

 
and 

1( )jU t  and 
2 ( )jU t  are defined as in (31) and (32). For a set of 

samples ( )
1{ }k

j kz 
 of 

1{ }j jZ 
 ,1 j N   , we compute the MC estimate 

of 
1 1 2( , )V x x  as  

              in
1

1
( )1

1 1 2 1 1
1 1

1ˆ ( , ) { } { } .j j

N n
t t k

j j j j
k j

c
V x x e e Z z

N
 





 

 
 

 
   

  
              (36) 

 

5.2) Specification and Results of the Simulation Study 
 
We now consider the example where 

1I   and 
2I  have a similar insurance 

portfolio. We choose the income rate 
1 2 6c c   and claims are produced 

according to 
1 2 5    and 

1 2 1   . For 
1I  we specify the barrier 

level 
1 5b  , while for 

2I  we will test the behavior under a low, medium or 

high barrier, i.e. 
2 1,5b   or 20 . Initially we consider the functions 

1 1 2( , )x x   and 
1 1 2( , )V x x , with 

1 10 x b    and
2 20 x b  . Due to 

symmetry reason, we only present the plots for 
1I . 
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1 1 2 1 2F i g u r e  3 :  T h e  ( , )  s u r f a c e  f o r  5  a n d  1 , 5 , 2 0  

( f o r  N = 5 0 , 0 0 0  s i m u la t i o n  r u n s ) .  

V x x b b 

 

This reflects that dividend payments are blocked as long as 
2U moves within

2[0, )b . Early ruin of the partner brings a relative improvement as own 

profits lead to immediate dividend payments, and the other favorable 
situation is where 

2I has high surplus and reaches its barrier 
2b  early. 

Otherwise we note that upon fixing
2x , 

1V  is naturally an increasing function 

in 
1x . Altogether, 

1V  appears to generally decrease as 
2b  grows.  
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1 1 2 1 2F i g u r e  4 :  T h e  ( , )  s u r f a c e  f o r  5  a n d  1 , 5 , 2 0   a n d  

0 . 1  ( f o r  N = 5 0 , 0 0 0  s i m u la t i o n  r u n s ) .  

V x x b b


 



 
Comparison to the stand-alone case. We now compare the above results to 
the stand-alone case by considering the plots (0)

1 1 2 1 1( , ) ( )x x x   and 
(0)

1 1 2 1 1( , ) ( )V x x V x , in order to reason in what situations it would turn out 

profitable to enter into the capital-exchange agreement for the given barrier 
combinations. 

 
 



Dividends and the Time of Ruin under Barrier Strategies … Anales 2015/1-30 

 

22 
 

  

 
( 0 )

1 1 2 1 1 1 2F i g u r e  5 :  ( , ) ( )  s u r f a c e  f o r  5  a n d  1 , 5 , 2 0  

( f o r  N = 5 0 , 0 0 0  s i m u l a t i o n  r u n s ) .  

x x x b b   

 
Figure 5 confirms that an increase in the expected time of ruin is achieved 
across all 

1 2( , )x x  combinations. In the top left graph where 
2b   is low, the 

effect is strongest when 
1x  is small and 

2x  is relatively high. However, note 

that 
2 1x    is low due to

2 1b  , so that the benefit from possible 

recapitalisation payments decreases as 
1x  becomes larger relative to

2x . 

These features becomes less and less pronounced as 
2b  increases. and we 

observe in those cases that the gain is naturally largest when 
2x  is high. 

Figure 6 then shows the change in the expected discounted dividends. In the 
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case 
2 1b  , the gain is highest where 

1x  is low and 
2x  is close to 

2b . This 

is justified, as 
2I  is more likely to recapitalise 

1I  so that it may reach its 

barrier faster. As 
1x approaches its own barrier 

1b , the change in expected 

discounted dividends from the agreement drops negative, as now the risk of 
having to support 

2I  instead paying early dividends becomes more 

pronounced. This notion of possibly having to support 
2I  rather than paying 

dividends becomes so strong for 
2 5b   and 

2 20b  , that the effect on the 

expected discounted dividends is negative for almost all cases, and large 
surplus levels 

1x  produce the worst outcomes. 
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( 0 )
1 1 2 1 1 1 2F i g u r e  6 :  ( , ) ( )  s u r f a c e  f o r  5  a n d  1 , 5 , 2 0   a n d  

0 . 1  ( f o r  N = 5 0 , 0 0 0  s i m u l a t i o n  r u n s ) .  

V x x V x b b


  


 

Note that as 
2b  , 

1 1 2( , )V x x  will tend to zero as excess capital will 

only go to the partner. We conclude that for low own surplus levels and low 
barriers 

2b  of the partner, the capital-exchange agreement can appear 

attractive in certain situations, while for larger own surplus levels, the 
possibility of having to recapitalise the partner clearly outweighs the effect 
from possible incoming support payments. 
 

 

 

1 2

F i g u r e  7 :  B a l a n c i n g  d i v i d e n d s  a n d  r u i n  t i m e :  0 . 2 ,  0 . 5  a n d  0 . 8  

w i t h  5  a n d  1  a n d  0 . 1  ( f o r  N = 5 0 , 0 0 0  s i m u l a t i o n  r u n s ) .  

w

b b 
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As the effects of the agreement on the expected time of ruin and the 
expectation of the discounted dividends are in opposite directions across 
most of the here considered cases, one will generally have to balance the 
wish for a long lifetime against the desire to receive early dividends. This is 
illustrated in Figures 7 to 9, where low, medium or high weight is given to 
the expected time of ruin. It is especially for high barriers 

2b   of the partner 

and high own surplus levels, that the preference for an expected increase in 
lifetime must be strong in order to justify entering the agreement, which 
becomes particularly clear from Figure 9. 

 

 

1 2

F i g u r e  8 :  B a l a n c i n g  d i v i d e n d s  a n d  r u i n  t i m e :  0 . 2 ,  0 . 5  a n d  0 . 8  

w i t h  5  a n d  5  a n d  0 . 1  ( f o r  N = 5 0 , 0 0 0  s i m u l a t i o n  r u n s ) .  

w

b b 
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Effect on the system of the two insurers. Finally, we investigate the effect 
of the capital-exchange agreement on the system of the two insurers against 
the stand-alone case. Hereby, we choose to compare the sums of the 
expected ruin times (one could also choose a different criterion, such as the 
maximum time of ruin of the two) and the expected discounted dividends, 
respectively. In particular, we evaluate 

(0) (0)
1 1 2 2 1 2 1 1 2 2( , ) ( , ) ( ) ( )x x x x x x       and

(0) (0)
1 1 2 2 1 2 1 1 2 2( , ) ( , ) ( ) ( ).V x x V x x V x V x    

 

 

1 2

F i g u r e  9 :  B a l a n c i n g  d i v i d e n d s  a n d  r u i n  t i m e :  0 . 2 ,  0 . 5  a n d  0 . 8  

w i t h  5  a n d  2 0  a n d  0 . 1  ( f o r  N = 5 0 , 0 0 0  s i m u l a t i o n  r u n s ) .  

w

b b 


  

 
Regarding the system gains for the expected ruin times, as depicted in Figure 
10, naturally all cases return positive results. In the case where one barrier is 
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larger than the other (i.e. 
1 25, 1b b   and 

1 25, 20b b  ) the positive 

effect appears to be largest in those cases where the process with the lower 
barrier starts close to the barrier while the process with the larger barrier has 
little initial surplus. For the expectation of the sum of the discounted 
dividends, as shown in Figure 11 a negative effect from the agreement is 
observed throughout, with the highest relative impact when both initial 
surplus levels are high. Again, it seems that in view of the whole system of 
the two insurers, putting a capital-exchange agreement in place must mostly 
be justified by a strong preference of extending the expected lifetimes of the 
insurers. 

 

 

 
1 2F i g u r e  1 0 :  S y s t e m  g a i n s  i n  t h e  e x p e c t e d  r u i n  t i m e  f o r  5  a n d  1, 5 , 2 0

( f o r  N = 5 0 , 0 0 0  s i m u la t i o n  r u n s ) .  

b b 
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 6) Concluding Remarks 
 
In this paper we investigated the impact of a capital-exchange agreement on 
the expected time of ruin and the expected discounted dividends of insurers. 
Such an agreement could for example exist among entities within an 
insurance group, as they recapitalise each other until the surplus processes of 
all subsidiaries run at some satisfactory levels; only then dividends are 
released to the shareholders. 

 

 

 
 

1 2

F i g u r e  1 1 :  S y s t e m  g a i n s  i n  t h e  e x p e c t a t i o n  o f  t o t a l  d i v i d e n d s  f o r

 5  a n d  1 , 5 , 2 0  a n d  0 . 1 ( f o r  N = 5 0 , 0 0 0  s i m u l a t i o n  r u n s ) .  b b   
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We have characterised the expected ruin time and the expected discounted 
dividends in this setup by deriving a set of equations in each case. The 
results of a Monte Carlo simulation study finally illustrated that the 
agreement naturally improves the expected time of ruin. This is the case 
from the viewpoint of each insurer that has assumed the agreement, and 
hence, also improves the expected ruin time across the system of the 
participating insurers. The effect on the dividends is found to be twofold. For 
low barrier levels of the partner, a positive effect is observed if one's own 
initial surplus is low. As either the partner's barrier increases, or the insurer 
own initial surplus is close to its barrier level, the effect on the expected 
discounted dividends appears negative. Asymptotically for some

ib  , 

the expected discounted dividends of all participating companies tends to 
zero, as dividend payments are blocked due to their recapitalisation 
obligation for insurer i . We conclude that in many situations a strong 
preference for an increase in the expected lifetime is required to justify 
entering the capital-exchange agreement. This effect is observed for single 
insurers, as well as from a systemic point of view.  
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