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Part I Introduction  

Before the 2007 crisis, traditional financial institution relied heavily on standard risk 

models. Failures of these models in the crisis era resulted in significant financial loss, 

as standard risk models are insensitive and slow to respond to the sudden change in 

volatility, often resulting in overestimated required capital in post-crisis era. These 

failures led to the interest of both academic world and financial institutions to 

understand the model risk, which was regarded as one of the most important 

reasons that contributed to the failures of standard risk models.  

The concept of the model risk has been debated and there is no single unified 

definition of  model risk. In general, model risk is often used in a wide sense and 

refers to any potential errors, misspecification of model or improper operation that 

may lead to inaccuracy in the results of the model. In this paper, model risk is 

defined as excessive frequency of hits, when actual return is less than VaR forecasts, 

and clustering of the hits / violations. In mathematical terms,  the model risk of 

excessive hits and violation clustering can be tested by likelihood ratio test of 

unconditional coverage  and independence proposed by Christoffersen (1998) .  

The concept of the optimal capital adjustment q is introduced in order to quantify 

the model selection criteria mentioned before. Backtesting procedure is 

implemented to search for a minimal capital adjustment q that allows the series of 

VaR forecasts to pass the likelihood ratio test of unconditional coverage and 

independence using a one-year moving window. With the backtesting procedure, 

this paper intends to quantify the model risk for various risk model and thus 

facilitate the model selection process. 

This paper uses Dow Jones Industrial Average (DJI) and S&P 500 (GSPC) indexes as 

original data. Log return of each index is used as input for modeling and forecast 

process. Common GARCH family models, historical simulation and normal 

distribution are employed as standard risk modes. The VaR forecasts are then 

calculated using a four-year moving window (1020 points). The parameters of the 

GARCH models were calibrated every single year (255 points) since it is common in 

market practice.  

Asymmetric GARCH model is expected to outperform standard GARCH model given 

the empirically observed asymmetric volatility. However, the findings of this paper 

suggest that the standard GARCH model performs relatively well within GARCH 

family models as it derives relatively stable capital adjustment. Since only frequency 

of hits and independence of hits are taken into consideration when searching for 

optimal capital adjustment, further study could incorporate the magnitude criteria to 

study its impact on the capital adjustment.  
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This paper also studies the relationship between model risk and significance level of 

VaR estimates. The findings indicate that the model risk boosts when significance 

level decreases. 

The optimal capital adjustment method offers an applicable method to quantify 

model risk. By tailoring the tests used in backtesting, it allows a subjective method to 

evaluate model risk and study the evolution of the model risk across time. 
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Part II Literature Review 

Insufficient understanding of model risk has emerged as a fundamental reason of the 

failures observed in prevalent risk models in the 2007 crisis. As a result, the concept 

of model risk has been brought into the scope of regulatory and academic interest.  

According to Green and Figlewski (1999), Cont (2006) and Hull and Suo (2002), there 

are three distinct types of model risk. First of all, the model could be poorly specified, 

and therefore it could not serve its purpose of risk management or asset valuation. 

Moreover, the application of a given model is under question if some strong 

assumptions have to be made without solid quantitative support. This usually 

happens when crucial inputs are not observable from the market. Furthermore, the 

choice of model can also be problematic and usually subject to expert judgment. 

Calibration and estimation error of parameters and inappropriate assumptions of the 

theoretical framework also contribute to the uncertainty of a given quantitative 

model (Alexander and Sarabia, 2012). In general, model risk is often used in a wide 

sense and refers to any potential errors, misspecification of model or improper 

operation that may lead to inaccuracy in the results of the model.  

It is widely recognized that various candidate models may lead to significant 

difference in risk forecasts, especially in crisis era when volatility peaks. Therefore, 

the selection of the most suitable model, as mentioned above, contributes to one of 

the most prominent model risks. Boucher et al.(2014) explored an applicable 

methodology to quantify the degree of suitability of candidate models through 

backtesting techniques. In their study, a series of dynamical adjustment of risk 

capital was calculated by comparing historical realized return and imperfect risk 

forecasts generated by candidate models. Considering some subjective desirable 

features of risk model, such as frequency, independence and magnitude of violations, 

they proposed that the adjustment of risk capital could be used as an indicator of the 

suitability of the candidate models. Inspired by Boucher et al.(2014), this paper 

employees the risk capital adjustment method via backtesting techniques to 

compare popular value at risk (VaR) models, a standard measure to quantify financial 

risks.  

Introduced by J.P Morgan in 1994 as a method of risk management, VaR has quickly 

become the most applied practical tool to quantify risk. VaR is defined as the 

maximum potential deviation in return of a financial instrument with a given 

probability over a fixed horizon. The measure has gained popularity as a 

sophisticated risk management tools thanks to the increased volatility observed in 

the financial market during last decades. VaR measures serve as an internal risk 

management tool, at  the same time, some regulatory bodies obligate financial 

institutions to calculate required capital based on VaR estimates. The accuracy of the 
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VaR estimates is therefore of paramount importance to achieve optimal capital 

allocation.  

Given the wide application of VaR measures in financial industry, especially for risk 

management and regulatory purposes, various methodologies were proposed to 

provide accurate estimates of VaR. According to Manganelli (2001), existing models 

for calculating VaR can be divided into three categories: parametric, Nonparametric 

and semiparametric models.  

Some typical parametric VaR models include RiskMetrics and Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) family models. As discovered 

by Mandelbrot (1963) and Fama (2007), distributions of financial return are typically 

leptokurtotic and negatively skewed, hence fat-tailed distributions, for instance, 

student t distribution or normal inverse Gaussian distribution, could depict better 

financial returns than widely applied normal distribution. Some research was 

focusing on comparing VaR models within GARCH family. Awartani and Corradi (2005) 

suggested that asymmetric GARCH model outperformed standard symmetric GARCH 

model. Their findings are aligned with empirical market observation that stock 

returns are usually negatively correlated with volatility.  

Historical simulation is one of the most popular nonparametric methods for VaR 

estimation. It significantly simplifies the calculation as no parametric assumption has 

to be made. However, as summarized by Manganelli (2001), some implicit hidden 

assumptions of this approach should be taken into considerations. First of all, 

although no explicit assumption of return distributions is made, all the returns within 

the rolling window are assumed to follow the same distribution. Moreover, the 

length of the window is a delicate issue. On the one hand, the quantile estimator 

only is consistent when the window size is infinite. On the other hand, the window 

size must not be too large since the forecasts are meaningful only the historical data 

follow the same distribution.  
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Part III Data and Descriptive Statistics  

Daily adjusted closing prices of the Dow Jones Industrial Average (^DJI) and the 

Standard & Poor’s 500 (^GSPC) are derived from Yahoo API. Log return of the indices 

is calculated and used as input of the VaR measures. The market return using the log 

function is defined as:  

�� = log �����	 

Where �� denotes price on day t.  

Descriptive statistics of the input indices are separately illustrated below.  

1. Dow Jones Industrial Average (^DJI) 

The Dow Jones Industrial Average is a stock market index created by Wall 

Street Journal editor and Dow Jones & Company co-founder Charles Dow. Its 

components are 30 largest public companies listed in the United States. The 

index is a price-weighted average of its components taking into account the 

effects of stock splits and other adjustments.  Although the index is supposed 

to generally depict the performance of the industrial sector, it is influenced 

by other macroeconomic factors of the economy. 

 

Figure 1 

The time series of observed log returns of the Dow Jones Industrial Average 

index on a daily basis consists of 8129 points (from 29 January 1985 to 26 

April 2017). As large changes tend to be followed by large changes while 

small fluctuations tend to be followed by small fluctuations, volatility 

clustering is observable, which is typical in financial time series.  
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Figure 2 

The autocorrelation function (ACF) plot of log return suggests potential first 

order auto-regression while the plot of partial autocorrelation function (PACF) 

of log return does not demonstrate the existence of moving average.  

 

Figure 3 

The non-linear Q-Q plot shows that the empirical distribution differs from 

normal distribution. The result of the KS test (p < 0.05) confirms the deviation 

by rejecting the null hypothesis of normality. 
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Figure 4 

 

Table 1 

As shown in the figure below, the density curve of the empirical distribution 

has more extreme values in its lower tail than the theoretical normal 

distribution curve, suggesting fat-tailed nature of the observed logarithmic 

return series.  

 

Figure 5 

 

 

2. Standard & Poor’s 500 (^GSPC) 

The Dow Jones Industrial Average is a stock market index based on the 

market capitalizations of 500 large companies having common stock listed on 

data:  log return of Dow Jones Industrial Average (DJI)

D = 0.085066, p-value < 2.2e-16

alternative hypothesis: two-sided

FAIL, REJECT THE NULL HYPOTHESIS AND LD.DJI IS NOT NORMAL. 

One-sample Kolmogorov-Smirnov test
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the NYSE or NASDAQ. The weightings of its components are determined by 

S&P Dow Jones Indices. The index is considered as one of the most 

representative indices of the U.S stock market and an general indicator of the 

U.S economy.   

 

Figure 6 

The time series of observed log returns of the Standard & Poor’s 500  index 

on a daily basis consists of 16939 points (from 3 January 1950 to 26 April 

2017). As large changes tend to be followed by large changes while small 

fluctuations tend to be followed by small fluctuations, volatility clustering is 

observable, which is typical in financial time series. 

 

Figure 7 

The autocorrelation function (ACF) plot of log return suggests potential first 

order auto-regression while the plot of partial autocorrelation function (PACF) 

of log return does not demonstrate the existence of moving average.  
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Figure 8 

The non-linear Q-Q plot shows that the empirical distribution differs from 

normal distribution. The result of the KS test (p < 0.05) confirms the deviation 

by rejecting the null hypothesis of normality. 

 

Figure 9 

 

Table 2 

 

data:  log return of S&P 500 (GSPC)

D = 0.07595, p-value < 2.2e-16

alternative hypothesis: two-sided

FAIL, REJECT THE NULL HYPOTHESIS AND LD.GSPC IS NOT NORMAL. 

One-sample Kolmogorov-Smirnov test
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As shown in the figure below, the density curve of the empirical distribution has 

more extreme values in its lower tail than the theoretical normal distribution curve, 

suggesting fat-tailed nature of the observed logarithmic return series. 

 

Figure 10 
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Part IV Methodology 

4.1 Definition of VaR 

VaR is the maximum potential deviation in return of a financial instrument with a 

given probability over a fixed horizon. As defined in previous section, �� is the log 

return series of the index in time t. The random loss over period [t, t + t´] is ∆��´� =−�����´ − ���. Let �∆� be the cumulative function of the random loss and �∆���� =��∆� ≤ ��. Then VaR at significance level α �α ∈ �0,1�� can be defined as the 

smallest real number satisfying the equation:  

�∆���� ≥ � 

Therefore,  

��� = inf ��|�∆���� ≥ �� 

Common market practice of VaR estimation includes econometric evaluation, 

quantile estimation based on historical simulation and extreme value method.  

4.2 Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model 

Engle (1982) developed the autoregressive conditional heteroscedasticity model 

(ARCH). Let %� be the log return at time t and �� represent the random factor. The 

autoregressive moving-average (ARMA) of order p and q is defined as:  

%� =  &' +  ) &*%��*
+

*,	 + �� −  ) -.���.
/

.,	   
where parameters of the equation are given as &', &	,…., &+, -	,…., -/.  

The random factor �� can be further specified as :  

�� =  0�1� 

where 1� is an independently and identically distributed random variable with 

certain distribution. 0� is the conditional variance of return %� , defined as 0� =2��%� − 2�%���3|4��	), where 4��	 represents all information available until 

moment t-1.  GARCH model of order u and v, in general, defines the conditional 

variance 0� as:  

0�3 =  �' +  ) �*���*35
*,	 +  ) 6.0��.37

.,	  

where parameters �', �	,…, �5, 6	 ,…, 67 meet the requirement of: 

�'  > 0, 
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6	 ,…, 67 ≥ 0, 

∑ ��* + 6*:;< �5,7�*,	 �  < 1.  

In the following sections, different GARCH family models will be presented and their 

formula will be given based on the definition of GARCH model defined above.  

4.2.1 The standard GARCH model  

The standard GARCH model (Bollerslev,1986), as mentioned above, is written 

as:  

0�3 =  �' +  ∑ �*���*35*,	 + ∑ 6.0��.37.,	 . 

In this paper, only GARCH(1,1) is used for VaR estimation and 1� is assumed 

to follow standardized normal distribution. The standard GARCH (1,1) model 

has the form of:  

%� =  &' +  ) &*%��*
+

*,	 + �� − ) -.���.
/

.,	  

�� =  0�1� 

1�  → ?�0,1� 

0�3 =  �'+ �	���	3 + 6	0��	3  

4.2.2 The exponential GARCH model 

Nelson (1991) defines the exponential GARCH model as:  

log �0�3) = �' +  ∑ ��*���*5*,	 + @*�|���*| −  2|���*|�� + ∑ 6.log �0��.3 �7.,	  

where @* captures the size effect. The expected value of the absolute 

standardized random factor �� is calculated as:  

2|��| = A |�|B��, 0,1, … �D�E
�E  

In this paper, only exponential GARCH(1,1) is used for VaR estimation and 1� 

is assumed to follow standardized normal distribution. The exponential 

GARCH (1,1) model has the form of:  

%� =  &' +  ) &*%��*
+

*,	 + �� − ) -.���.
/

.,	  
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1�  → ?�0,1� 

log �0�3) = �' + �	���	 + @	�|���	| −  2|���	|� + 6	log �0��	3 �  
4.2.3 The GJR GARCH model 

Glosten et al. (1993) proposed the GJR GARCH model which allows the model 

to asymmetrically incorporate positive and negative shocks by applying the 

indicator function F.  

The conditional variance is defined as:  

0�3 =  �' +  )��*1��*35
*,	 + @*F��*1��*3 � +  ) 6.0��.37

.,	  

where @* captures the leverage effect. The indicator function is given as:  

F =  G1,              HB 1 ≤ 00, IℎK%LHMK 

In this paper, only GJR GARCH(1,1) is used for VaR estimation and 1� is 

assumed to follow standardized normal distribution. The GJR GARCH (1,1) 

model has the form of:  

%� =  &' +  ) &*%��*
+

*,	 + �� − ) -.���.
/

.,	  

�� =  0�1� 

1�  → ?�0,1� 

0�3 = �' + �	1��	3 + @	F��	1��	3 + 6	0��	3   
4.2.4 The threshold GARCH model 

According to Zakoian (1994), the threshold GARCH model is defined as:  

0�3 = �' +  ∑ �*�|1��*| −5*,	 @*1��*� +  ∑ 6.0��.7.,	  

In this paper, only threshold GARCH(1,1) is used for VaR estimation and 1� is 

assumed to follow standardized normal distribution. The threshold GARCH 

(1,1) model has the form of:  

%� =  &' +  ) &*%��*
+

*,	 + �� − ) -.���.
/

.,	  

�� =  0�1� 
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0�3 = �' + �	�|1��	| − @	1��	� + 6	0��	 

In this paper, daily VaR estimates are calculated for all GARCH family models 

mentioned above. The parameters of the GARCH model are derived from a moving 

window of 4 years (1020 points)  and recalibrated every year (255 points).  

Daily VaR is estimated with conditional variance. For instance, if the significance level 

is �, VaR forecast at time t is:  

 ���� =  ��NOK IB BHP�PQH�N �IMHHIP × S�	��� × 0�  
where S�	�� is the inverse standard normal distribution.   

4.3 Parametric model – Normal distribution 

Under the parametric model, daily returns are assumed to be normally distributed. A 

moving window of 4 year (1020 points) is used to recalibrate parameters every single 

day. VaR forecasts with the significance level � is obtained as:   

���� =  ��NOK IB BHP�PQH�N �IMHHIP × S�	��� × 0� 

where S�	�� is the inverse standard normal distribution.   

4.4 Nonparametric model – historical simulation of VaR 

The historical simulation technique assumes no specific return distribution.  Given a 

moving window of t periods, the VaR estimates of significance level �are calculated 

as:  

���� = �K%QKPHN{{%*U*,	� , �100 × ��%U 

where {%*U*,	�  is the series of log return defined above.  

Compared with other methodologies, the historical simulation technique largely 

simplifies the estimation process and gives relatively reliable results. However, the 

implicit underlying assumption is that future returns continue behaving in the same 

way as historical returns thus historical returns can be used to predict future. The 

result of the VaR estimates varies a lot depending on the chosen window.  

In this paper, moving windows of 4 years (1020 points) and 10 years (2550 points) 

are used for VaR estimates.  

4.5 General Backtesting Procedure  

Backtesting is applied to check the reliability of distinct VaR models. Various criteria 

and tests have been proposed to measure and compare the results of distinct VaR 

models (Pérignon and Smith, 2010). In this paper, likelihood ratio test of 

unconditional coverage and independence proposed by Christoffersen (1998) are 
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used to gauge the accuracy the VaR forecasts. More details regarding the 

mathematical explanation of the LR tests could be found in the following sector.  

The backtesting procedure is implemented to search for a minimal capital 

adjustment q that allows the series of VaR forecasts to pass the likelihood ratio test 

using a one-year moving window (255 points). In other words, a sequence of VaR 

forecasts in time t can be derived from the methodologies mentioned above, given {�������:  = [1, … , Y]U. The backtesting technique looks for the set of values ∈ ℝ , 

such that the sequence: {������� − \:  = [1, … , Y]U passes all the backtests of the 

LR test. The search for q starts from a relatively big negative value (less prudent) and 

successively increases by 0.01% until all tests are passed.  

4.6 Adjustment Criteria – Frequency and Independence 

From the perspective of risk management, a desirable VaR model should satisfy at 

least two properties. First of all, the actual frequency of violations should be 

consistent with the chosen expected level of violation (α). Moreover, the violation 

should be sporadic, which means no violation clustering should be observed.  

The indicator variable of hit at time t, F� is defined as, 

F��α�  = ]1, HB �� < ����|��	��� 0, HB �� ≥ ����|��	��� , 

where �� is the return at time t, with t ={1,2,…,T}, ����|��	��� is the VaR estimation 

of time t made at time  − 1 for threshold α. 

Christoffersen (1998) proposed an operational testing criterion in order to develop 

easily implementable testing procedures. The sequence of the VaR forecasts ����|��	��� is efficient if 2[F�|��	,��3…] = � for all t. This is equivalent to testing that 

the variable F� follows Bernoulli distribution with parameter α,  

{F��α�U  ∼ _K%P���, 

Therefore, the total number of VaR exceptions, named `H� , follows a binomial 

distribution, 

a `H� = b F��α�c
�,	 d  ∼ _�Y, �� 

4.6.1 The likelihood ratio test of unconditional coverage 

Given a sequence of indicator variable, {F��α�U �,	c , the null hypothesis is 

2[F�] = �. 

The likelihood under the null hypothesis is  
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where P	 is the number of hits, P	 + P' = Y.  

The alternative hypothesis is 

2[F�] ≠ �. 

The likelihood under the alternative hypothesis is  

e��; F	, F3, … , Fc� = �1 − ��gh�gi 

The standard likelihood ratio test can be written as 

e�5k =  −2 log me��; F	, F3, … , Fc�e� �̂;  F	, F3, … , Fc�o →  ℵ3�1� 

where �̂ =  P	/�P	 + P'�. Under the null hypothesis, e�5k follows the asymptotic 

distribution.  

The procedure above only compares the number of violations observed with 

expected frequency of violations, while it is indifferent to the presence of violations 

clustering. The test of independence presented below makes up the deficiency by 

capturing the dynamics in the higher-order moments.  

4.6.2 The likelihood ratio test of Independence 

Christoffersen (1998) proposed  the independence test using an explicit first-order 

Markov alternative. The transition probability matrix of a binary first –order Markov 

chain is defined as 

r = s1 − t'	 t'	1 − t		 t		u 

where t*. = �%Iv�F� = w | F��	 = H�. 

The transition probability matrix under the null hypothesis of independence is  

r' =  s1 − tg tg1 − tg t5u 

where tg = �P'	 + P		�/�P'	 + P		�P'' + P	'�, P*. is the number of observations 

with value I followed by j.  

The likelihood under the null hypothesis is  

e�r';  F	, F3, … , Fc� = �1 − tg�ghh�gihtgghi�gii. 

The transition probability matrix under the alternative hypothesis of independence is  



20 

Quantification of Model Risk with Bootstrapping Method 

r	 =  x P''P'' + P'	
P'	P'' + P'	P	'P	' + P		
P		P	' + P		

y 

The likelihood under the alternative hypothesis is  

e�r	;  F	, F3, … , Fc� = �1 − t'	�ghht'	ghi�1 − t		�giht		gii. 

The likelihood ratio test of independence is asymptotically distributed and can be 

specified as 

e�*gz =  −2 log me�r';  F	, F3, … , Fc�e� r	; F	, F3, … , Fc�o →  ℵ3�1� 

4.6.3 The joint test of Coverage and Independence 

Christoffersen (1998) proved that the above tests of unconditional coverage and 

independence can be combined and jointly expressed a single test. The combine 

likelihood ratio test is also asymptotical, which can be specified as  

e�kk =  e�5k +  e�*gz →  ℵ3�2�  
Thanks to the simplicity of the joint form, the search of the sequence of capital 

adjustment q is based on this joint test.   
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Part V Results  

5.1 Result of GARCH family models 

In order to calculate daily VaR forecasts, it is necessary to determine the best model 

which can fully represent the observed daily return of the historical time series. All 

historical data were used for the model estimation to avoid any bias towards a given 

time period. Although there is no fixed rule for model selection, usually a set of 

commonly used statistical criteria is taken into account to reflect different aspects of 

the model estimation, including no remaining autocorrelations, no remaining arch 

patterns, significant coefficients and AIC.  

After various ARMA and GARCH models have been compared, ARMA(0,0)-GARCH(1,1) 

model gives best result of Dow Jones industrial Average (DJI) and ARMA(0,1)-

GARCH(1,1) model fits better S&P 500.  

The results of the fitted GARCH family models are demonstrated below. The model 

with least AIC value is ranked as the best fitted model within GARCH family. The 

asymmetric models outperform the standard symmetric GARCH model. This makes 

sense since shock returns are negatively correlated with volatility and asymmetric 

volatility is observable in the market.  

5.1.1 Dow Jones Industrial Average (DJI) 

1. Standard GARCH (1,1) – ARMA(0,0) 

As demonstrated below, the normal standard GARCH(1,1) gives relatively well 

estimation of the historical DJI series. All coefficients are significant. Neither arch  

pattern nor serial correlation can be observed in the residuals.  The news impact 

curve of standard GARCH(1,1) suggests that the change of the conditional variance 0� is indifferent to the signal of the random component 1��	.   

 

Figure 11 
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Figure 12 

2. Exponential GARCH(1,1) – ARMA (0,0)  

As demonstrated below, the normal exponential GARCH(1,1) gives relatively well 

estimation of the historical DJI series. All coefficients are significant. Neither arch  

pattern nor serial correlation can be observed in the residuals.  The news impact 

curve of exponential GARCH(1,1) suggests that the change of the conditional 

variance 0� is only sensitive to the negative 1��	.   

 

Figure 13 

 

Figure 14 
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3. GJR GARCH(1,1) – ARMA (0,0)  

The normal GJR GARCH(1,1) incorporates an indicator function and gives relatively 

well estimation of the historical DJI series. All coefficients are significant. Neither 

arch  pattern nor serial correlation can be observed in the residuals.  The news 

impact curve of GJR GARCH(1,1) suggests that the change of the conditional variance 0� is more sensitive to the negative 1��	, which represents well the empirical 

observation of asymmetric volatility.  

 

Figure 15 

 

Figure 16 

4. Threshold GARCH(1,1) – ARMA (0,0)  

The normal threshold GARCH(1,1) incorporates an indicator function and gives 

relatively well estimation of the historical DJI series. All coefficients are significant. 

Neither arch  pattern nor serial correlation can be observed in the residuals.  The 

news impact curve of threshold GARCH(1,1) suggests that the change of the 

conditional variance 0� is more sensitive to the negative 1��	, which represents well 

the empirical observation of asymmetric volatility.  
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Figure 17 

 

Figure 18 

Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) are used to 

determine the quality  of GARCH family models. AIC and BIC give consistent results 

that threshold GARCH(1,1) – ARMA (0,0) is the preferred model for DJI index. It is 

worth mentioning that since GJR GARCH model is nested with standard GARCH 

model, a likelihood ratio test has been conducted. The test result is in line with AIC 

and BIC that GJR GARCH is better than standard GARCH model.  

 

Table 3 

 

Akaike Bayes Shibata Hannan-Quinn LogLikelihood

1 Tgarch(1,1), norm -6.5837 -6.5794 -6.5837 -6.5823 26761.33

2 eGARCH(1,1),norm -6.5785 -6.5742 -6.5785 -6.5771 26740.21

3 gjrGARCH(1,1),norm -6.5733 -6.569 -6.5733 -6.5718 26718.84

4 sGARCH(1,1),norm -6.5515 -6.5481 -6.5515 -6.5504 26629.42

Summary - model statistics 
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5.1.2 S&P 500 (GSPC) 

1. Standard GARCH(1,1) – ARMA (0,1) 

As demonstrated below, the normal standard GARCH(1,1) gives relatively well 

estimation of the historical GSPC series. Most coefficients are significant. Neither 

arch  pattern nor serial correlation can be observed in the residuals.  The news 

impact curve of standard GARCH(1,1) suggests that the change of the conditional 

variance 0� is indifferent to the signal of the random component 1��	.   

 

Figure 19 

 

Figure 20 

2. Exponential GARCH(1,1) – ARMA (0,1) 

As demonstrated below, the normal exponential GARCH(1,1) gives relatively well 

estimation of the historical GSPC series. All coefficients are significant. Neither arch  

pattern nor serial correlation can be observed in the residuals.  The news impact 

curve of standard GARCH(1,1) suggests that the change of the conditional variance 0� is only sensitive to the negative random component 1��	.   
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Figure 21 

 

Figure 22 

3. GJR GARCH(1,1) – ARMA (0,1) 

As demonstrated below, the normal GJR GARCH(1,1) gives relatively well estimation 

of the historical GSPC series. Most coefficients are significant. Neither arch  pattern 

nor serial correlation can be observed in the residuals.  The news impact curve of 

standard GARCH(1,1) suggests that the change of the conditional variance 0� is more 

sensitive to the negative 1��	, which represents well the empirical observation of 

asymmetric volatility. 

 

Figure 23 
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Figure 24 

4. Threshold GARCH(1,1) – ARMA (0,1) 

The normal threshold GARCH(1,1) gives relatively well estimation of the historical 

GSPC series. All coefficients are significant. Neither arch  pattern nor serial 

correlation can be observed in the residuals.  The news impact curve of standard 

GARCH(1,1) suggests that the change of the conditional variance 0� is more sensitive 

to the negative 1��	, which represents well the empirical observation of asymmetric 

volatility. 

 

Figure 25 
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Figure 26 

Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) are used to 

determine the quality  of GARCH family models. AIC and BIC give consistent results 

that exponential GARCH(1,1) – ARMA (0,1) is the preferred model for GSPC index. It 

is worth mentioning that since GJR GARCH model is nested with standard GARCH 

model, a likelihood ratio test has been conducted. The test result is in line with AIC 

and BIC that GJR GARCH is better than standard GARCH model.  

 

Table 4 

5.2 Result of VaR estimates  

For GARCH family models, daily VaR forecasts were calculated using a four-year 

moving window (1020 points). The parameters of the GARCH models were calibrated 

every single year (255 points) since it is common in market practice. Daily VaR 

forecasts at significance level 1%, 2.5% and 5% were separately estimated.  

As demonstrated below, for DJI and GSPC index, the frequency of hits (actual return 

< VaR forecasts) increases with significance level  α. Moreover, for α level 2.5% and 

5%, hits tend to cluster together especially when volatility is relatively high (e.g. in 

crisis era). The graphs below only illustrate results of normal standard GARCH model 

of DJI and GSPC while similar conclusions can be drawn from other GARCH family 

models.  

DJI (α = 1%) – Standard GARCH (1,1) – ARMA (0,0) 

Akaike Bayes Shibata Hannan-Quinn LogLikelihood

1 eGARCH(1,1),norm -6.8365 -6.8337 -6.8365 -6.8356 57904.19

2 Tgarch(1,1), norm -6.8363 -6.8335 -6.8363 -6.8354 57902.38

3 gjrGARCH(1,1),norm -6.8341 -6.8314 -6.8341 -6.8332 57884.35

4 sGARCH(1,1),norm -6.8107 -6.8089 -6.8107 -6.8101 57684.1

Summary - model statistics 
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Figure 27 

DJI (α = 2.5%) – Standard GARCH (1,1) – ARMA (0,0) 

 

Figure 28 

DJI (α = 5%) – Standard GARCH (1,1) – ARMA (0,0) 

 

Figure 29 

GSPC (α = 1%) – Standard GARCH (1,1) – ARMA (0,1) 
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Figure 30 

GSPC (α = 2.5%) – Standard GARCH (1,1) – ARMA (0,1) 

 

Figure 31 

GSPC (α = 5%) – Standard GARCH (1,1) – ARMA (0,1) 

 

Figure 32 

The results of the non-parametric historical simulation demonstrated below were 

calculated at significance level 1%, 2.5% and 5% with a four-year moving window as 
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well. As expected, for DJI and GSPC index, the frequency of hits (actual return < VaR 

forecasts) increases with significance level  α. Moreover, for α level 2.5% and 5%, 

hits tend to cluster together especially when volatility is relatively high (e.g. in crisis 

era). Although more restricted α level significantly lowers the frequency of hits, such 

improvement comes at the expense of excessive capital requirement when volatility 

is relatively low. Compared with the dynamic GARCH family models, the historical 

simulation method is insensitive to the sudden change of volatility. It responds 

slowly to the increase in volatility and such stagnation results in insufficient VaR 

forecasts in times of crisis and excessive capital requirement in post-crisis era.  

DJI (α = 1%) - Non-parametric historical simulation 

 

Figure 33 

DJI (α = 2.5%) - Non-parametric historical simulation 

 

Figure 34 

DJI (α = 5%) - Non-parametric historical simulation 
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Figure 35 

GSPC (α = 1%) - Non-parametric historical simulation 

 

Figure 36 

GSPC (α = 2.5%) - Non-parametric historical simulation 

 

 

Figure 37 
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GSPC (α = 5%) - Non-parametric historical simulation 

 

Figure 38 

The results of the normal distribution simulation were calculated at significance level 

1%, 2.5% and 5% with a four-year moving window as well. The conclusion is similar 

to the non-parametric simulation that  the lower frequency of hits  comes at the 

expense of excessive capital requirement when volatility is relatively low. Compared 

with the dynamic GARCH family models, this method is insensitive to the sudden 

change of volatility. It responds slowly to the increase in volatility and such 

stagnation results in insufficient VaR forecasts in times of crisis and excessive capital 

requirement in post-crisis era.  

The results of VaR forecasts vary with different methodologies. For DJI index, the 

difference between the maximum and minimum VaR forecasts within GARCH family 

at significance level 5% can reach 3%. The difference in VaR forecasts among various 

GARCH family models enlarges to 4% when the significance level is 1%. Also, the 

difference tends to be larger when more volatility is observed in the market, which 

highlights the importance of searching for an accuracy VaR estimates. As crisis era is 

marked with extremely high volatility, the selection of VaR models is critical for risk 

management.  

DJI – GARCH FAMILY 
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Figure 39 

 

Figure 40 

 

Figure 41 

DJI – GARCH FAMILY, Non-parametric and normal distribution models 
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Comparing estimates results generated by GARCH family models, historical 

simulations and normal distribution model, the difference between the maximum 

and minimum VaR forecasts at significance level 5% can reach 5%. The difference in 

VaR forecasts among various models enlarges to 7% when the significance level is 1%. 

As mentioned before, the model selection is crucial in times of crisis since the 

difference of model estimates is larger when volatility is high.  

 

Figure 42 

 

Figure 43 

GSPC – GARCH FAMILY 

For GSPC index, the difference between the maximum and minimum VaR forecasts 

within GARCH family at significance level 5% can reach 8%. The difference in VaR 

forecasts among various GARCH family models can be almost 13% when the 

significance level is 1%. Also, the difference tends to be larger when more volatility is 

observed in the market, which highlights the importance of searching for an 
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accuracy VaR estimates. As crisis era is marked with extremely high volatility, the 

selection of VaR models is critical for risk management.  

 

Figure 44 

 

Figure 45 
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Figure 46 

GSPC – GARCH FAMILY, Non-parametric and normal models 

Comparing estimates results generated by GARCH family models, historical 

simulations and normal distribution model, the difference between the maximum 

and minimum VaR forecasts at significance level 5% can reach 13%. The difference in 

VaR forecasts among various models enlarges to 16% when the significance level is 

1%. As mentioned before, the model selection is crucial in times of crisis since the 

difference of model estimates is larger when volatility is high.  

 

Figure 47 
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Figure 48 

5.3 The concept of capital adjustment q  

Hit of the VaR forecasts occurs when the negative actual return is less than the VaR 

estimates, which means that the model gives insufficient estimates to cover the risk. 

Graphs below demonstrated the magnitude of the hits. As predicted, hits are less 

frequent and less severe for significance level 1% than for significance level 5%. The 

figure also shows that hits tend to be autocorrelated with high frequency. It would 

be ideal if an optimal capital adjustment of VaR was applied to increase the capital 

requirement. Such buffer (represented by the horizontal lines in the following graphs) 

can significantly reduces the frequency , autocorrelation and magnitude of the hits 

hence boosts the performance of the VaR models. In the following section, the result 

of the q adjustment is presented for further examination.  

DJI – Standard GARCH(1,1) – VaR (5%)  

 

Figure 49 

DJI – Standard GARCH(1,1) – VaR (1%)  
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Figure 50 

 GSPC – Standard GARCH(1,1) – VaR (5%)  

 

Figure 51 

 GSPC – Standard GARCH(1,1) – VaR (1%)  
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Figure 52 

5.4 Result of Backtesting – Adjustment q 

The backtesting technique, as mentioned in the methodology section, is applied to 

calculate the optimal capital adjustment q. The algorithm programmed is using a 

loop function to exhaustively search for the minimum q that can pass the 

unconditional coverage and independence test. The search begins with a large 

negative value and increases by 0.01% each time until the test is passed. If  q is 

negative, less capital is required to pass the test. If q is positive, the VaR forecasts 

are not sufficient to pass the tests and therefore more capital should be injected.  

The VaR forecasts are calculated with a moving window of 4 years (1020 points) 

while the backtesting is performed with a one-year window (255 points). The 

significance level of the unconditional and independence test is 5%.  

DJI VaR (5%) 

Optimal capital adjustment q was calculated separately for different VaR estimates 

models at significance level 5%. Generally speaking, for DJI index, the GARCH family 

models require less capital adjustment and the model performance is more stable 

than historical simulation and normal distribution method. In the following sector, 

optimal capital adjustment q results of various models are analysed and  a general 

comparison is drawn in the end.    

DJI Standard GARCH (1,1)-ARMA(0,0) VaR(95%) 

The capital adjustment for standard GARCH model is relatvely stable overtime. In 

most of the cases, q is negative, which suggests that the model overestimates the 

capital requirement necessary to pass the model. In the times of crisis, the model 

performance is also stable given the q adjustment is only around 0.2% to pass the 

conditional coverage and independence test.  
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Figure 53 

DJI  Exponential GARCH (1,1)-ARMA(0,0) VaR(95%) 

The exponential GARCH model also demonstrates stable performance over time. In 

most of the cases, q is negative, which suggests that the model overestimates the 

capital requirement necessary to pass the model. In recent crisis (2007), the model 

requires more capital adjustment (almost 1%) than standard GARCH model to pass 

the conditional coverage and independence test. The sudden boost of q implies that 

during the 2007 crisis, excessive hits and violation clustering ocurred fot the 

exponential GARCH model.  

 

Figure 54 

DJI  GJR GARCH (1,1)-ARMA(0,0) VaR(95%) 

The optimal capital adjustment q of the GJR GARCH model resembles a lot to the q 

of standard GARCH model. In most of the time, q is negative and immaterial, while in 

the recent crisis (2007), a sudden jump of q can be observed and its magnitude can 

reach to 0.04%.  
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Figure 55 

DJI  Threshold GARCH (1,1)-ARMA(0,0) VaR(95%) 

The optimal capital adjustment q of the Threshold GARCH model resembles a lot to 

the q of standard and GJR GARCH model. In most of the time, q is negative and 

immaterial, while in the recent crisis (2007), a sudden jump of q can be observed and 

its magnitude can reach to 0.04%.  

 

Figure 56 

For DJI index, the GARCH family VaR estimates works efficiently to predict the 

potential risk. Regarding the recent crisis, to our surprise, the standard GARCH 

model requires less capital adjustment to pass the unconditional and independence 

test.  
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Figure 57 

As illustrated in the following graphs, compared with GARCH family models, the 

optimal capital adjustment q demonstrates more volatility for the historical 

simulation and normal distribution methods. Excessive capital is required in most 

cases. Especially in post-crisis era (2010), almost 1.5% unnecessary capital is required 

by the models while in crisis era the capital adjustment can reach to 1.8%. This 

phenomenon implicates that the historical simulation and normal distribution 

methods adapt very slow to the sudden exchange of volatility. As a result, 

insufficient VaR forecasts are made during crisis while excessive capital is required 

after crisis.   

 

Figure 58 
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Figure 59 

For DJI index, the GARCH family VaR estimates works better to predict the potential 

risk than historical simulation and normal distribution method. The following graph 

shows that in average GARCH family models require stable and low capital 

adjustment while for other two methods volatility is common is the times of crisis 

and in the post-crisis era.   

 

Figure 60 

As expected, the GARCH family models result in the least absolute value of the q 

adjustment, 0.28% in average. When q is positive, the average adjustment q is 0.18% 

in average for GARCH family models. Compared with historical simulation and 

normal distribution method, with q adjustment 0.47% and 0.51% respectively, 

GARCH model forecasts experience less hits and the hits are less autocorrelated.  

To our surprise, the standard GARCH model requires least capital adjustment q 

among GARCH family. The absolute value of the adjustment q is 0.27% in average  

and its standard deviation is 0.2%, lowest within GARCH family.  
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Table 5 

According to the AIC and BIC statistics derived in previous chapter, the asymmetric 

GARCH family model should have made a better estimation than the standard 

symmetric GARCH model. The reason of the inconsistency is that the optimal capital 

adjustment q in this paper takes into account frequency of the hit and the 

independence of the hit, while the magnitude of the hit is neglected. Further study 

could incorporate the magnitude criteria to study the its impact on the capital 

adjustment q. 

 

Table 6 

As shown in the table below, the threshold GARCH model gives the lowest average 

number of hits with a one year moving window, while the magnitude of the hit is 

only -0.60%. The average number of hit of standard GARCH model is 13.813, the 

highest among all models. The reason that the standard GARCH model results in 

least q adjustment is that it performs relatively well in independence test, while 

other GARCH family methods get penalized  for violation clustering. Here, the 

optimal adjustment q takes a different perspective than traditional method.  

 

Table 7 

sGARCH eGARCH gjrGARCH tGARCH historical Normal Average_GARCH

-0.23% -0.22% -0.23% -0.26% -0.38% -0.47% -0.24%

0.27% 0.31% 0.28% 0.30% 0.56% 0.65% 0.28%

0.19% 0.35% 0.23% 0.21% 0.47% 0.51% 0.18%

-0.28% -0.31% -0.28% -0.31% -0.59% -0.68% -0.29%

0.20% 0.29% 0.22% 0.22% 0.60% 0.64% 0.21%

Akaike Bayes Shibata Hannan-Quinn LogLikelihood

1 Tgarch(1,1), norm -6.5837 -6.5794 -6.5837 -6.5823 26761.33

2 eGARCH(1,1),norm -6.5785 -6.5742 -6.5785 -6.5771 26740.21

3 gjrGARCH(1,1),norm -6.5733 -6.569 -6.5733 -6.5718 26718.84

4 sGARCH(1,1),norm -6.5515 -6.5481 -6.5515 -6.5504 26629.42

Summary - model statistics 

sgarch egarch gjrgarch tgarch Historical Norm

13.813     14.054     13.534     13.101     13.322     12.702     

6.388        8.341        6.272        7.170        12.183     12.579     

-0.62% -0.59% -0.60% -0.60% -0.68% -0.67%
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Figure 61 

 

Figure 62 

 

GSPC VaR (5%) 

For the GSPC index, the conclusion regarding the performance of capital adjustment 

q is similar to the DJI index. The optimal adjustment q of GARCH family is usually 

smaller than the those of historical simulations and normal distribution. Therefore, 

the study concludes that GARCH family VaR is better than others given least 

adjustment required to pass the conditional coverage and independence test.  

In the next sector, optimal capital adjustment q results of various models are 

analysed and  a general comparison is drawn in the end.    

GSPC  Standard GARCH (1,1)-ARMA(0,1) VaR(95%)  

The capital adjustment for standard GARCH model is relatvely stable overtime. In 

most of the cases, q is negative, which suggests that the model overestimates the 
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capital requirement necessary to pass the model. A single large jump of q 

adjustment is observed for the 1987 crisis where q easily reaches to 3.33%. In the 

2007 crisis, the model performance is also stable given the q adjustment is only 

around 0.17% to pass the conditional coverage and independence test.  

 

 

Figure 63 

GSPC  Exponential GARCH (1,1)-ARMA(0,1) VaR(95%) 

The exponential GARCH model also demonstrates stable performance over time. In 

most of the cases, q is negative, which suggests that the model overestimates the 

capital requirement necessary to pass the model. In recent crisis (2007), the model 

requires more capital adjustment (almost 0.7%) than standard GARCH model to pass 

the conditional coverage and independence test. The sudden boost of q implies that 

during the 2007 crisis, excessive hits and violation clustering ocurred fot the 

exponential GARCH model.  

 

Figure 64 

GSPC  gjr GARCH (1,1)-ARMA(0,1) VaR(95%) 
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The optimal capital adjustment q of the GJR GARCH model resembles a lot to the q 

of standard GARCH model. A single large jump of q adjustment is observed for the 

1987 crisis where q easily reaches to 3.32%. In most of the time, q is negative and 

immaterial, while in the recent crisis (2007), no sudden jump is observed which 

demonstrates stability of the model.   

 

Figure 65 

GSPC  Threshold GARCH (1,1)-ARMA(0,1) VaR(95%) 

The optimal capital adjustment q of the Threshold GARCH model resembles a lot to 

the q of standard and GJR GARCH model. In most of the time, q is negative and 

immaterial. There is no sudden jump of q in the 1987 and 2007 crisis. The model is 

relatively stable.   

 

 

Figure 67 

For GSPC index, the GARCH family VaR estimates works efficiently to predict the 

potential risk. Regarding the recent crisis, to our surprise, the GJR GARCH model and 

threshold GARCH model do not require extra capital adjustment to pass the 

unconditional and independence test.  
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Figure 68 

As illustrated in the following graphs, compared with GARCH family models, the 

optimal capital adjustment q demonstrates more volatility for the historical 

simulation and normal distribution methods. Excessive capital is required in most 

cases. In crisis era the capital adjustment can reach to 2%. This phenomenon 

implicates that the historical simulation and normal distribution methods adapt very 

slow to the sudden exchange of volatility. As a result, insufficient VaR forecasts are 

made during crisis while excessive capital is required after crisis.   

 

Figure 69 
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Figure 70 

For GSPCindex, the GARCH family VaR estimates works better to predict the 

potential risk than historical simulation and normal distribution method. The 

following graph shows that in average GARCH family models require stable and low 

capital adjustment while for other two methods volatility is common is the times of 

crisis and in the post-crisis era.   

 

Figure 71 

When q is positive, which means more capital is required to pass the tests, the 

adjustment of GARCH family models is the smallest compared with other two 

techniques. Generally speaking, GARCH family models demonstrate stability in VaR 

forecasts in terms of conditional coverage and independence assumption.  

As expected, the GARCH family models result in the least absolute value of the q 

adjustment, 0.24% in average. When q is positive, the average adjustment q is 0.12% 

in average for GARCH family models. Compared with historical simulation and 

normal distribution method, with q adjustment 0.41% and 0.36% respectively, 

GARCH model forecasts experience less hits and the hits are less autocorrelated.  

The exponential GARCH model requires least capital adjustment q among GARCH 

family (-0.2%). The absolute value of the adjustment q is 0.24% in average  and its 
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standard deviation is 0.2%, lowest within GARCH family. The standard GARCH model 

does well when q is positive, only 15% of additional capital is required to pass the 

conditional coverage and independence test, lowest within GARCH family models.  

 

Table 8 

According to the AIC and BIC statistics derived in previous chapter, the asymmetric 

GARCH family model should have made a better estimation than the standard 

symmetric GARCH model. In general, the result of the optimal capital adjustment q is 

aligned with the AIC and BIC statistics, though to our surprise, standard GARCH 

model performs better than other models when capital adjustment is positive. As 

explained for DJI index, the reason of such inconsistency is that the optimal capital 

adjustment q in this paper takes into account frequency of the hit and the 

independence of the hit, while the magnitude of the hit is neglected. 

 

Table 9 

As shown in the table below, the gjr GARCH model gives the lowest average number 

of hits with a one year moving window, while the magnitude of the hit is only -0.51%. 

The average number of hit of standard GARCH model is 13.545, highest among all 

models. The reason that the standard GARCH model results in relatively good q 

adjustment is that it performs well in the independence test, while other GARCH 

family methods get penalized  for violation clustering. Here, the optimal adjustment 

q takes a different perspective than traditional method.  

 

Table 10 

sGARCH eGARCH gjrGARCH tGARCH historical Normal Average_GARCH

-0.22% -0.20% -0.23% -0.23% -0.21% -0.26% -0.22%

0.24% 0.24% 0.24% 0.25% 0.41% 0.44% 0.24%

0.15% 0.22% 0.20% 0.20% 0.41% 0.36% 0.12%

-0.24% -0.25% -0.24% -0.26% -0.42% -0.47% -0.25%

0.17% 0.20% 0.17% 0.18% 0.48% 0.48% 0.16%

Akaike Bayes Shibata Hannan-Quinn LogLikelihood

1 eGARCH(1,1),norm -6.8365 -6.8337 -6.8365 -6.8356 57904.19

2 Tgarch(1,1), norm -6.8363 -6.8335 -6.8363 -6.8354 57902.38

3 gjrGARCH(1,1),norm -6.8341 -6.8314 -6.8341 -6.8332 57884.35

4 sGARCH(1,1),norm -6.8107 -6.8089 -6.8107 -6.8101 57684.1

Summary - model statistics 

sgarch egarch gjrgarch tgarch Historical Norm

13.545     14.265     13.225     13.522     14.199     13.092     

5.496        6.536        5.291        5.916        11.488     11.401     

-0.53% -0.51% -0.51% -0.51% -0.56% -0.58%
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Figure 72 

 

Figure 73 

5.5 Model risk and significance level 

Compared with the optimal capital adjustment calculated for VaR at significance 

level 5%, VaR at significance level 1% requires more capital adjustment to pass the 

unconditional coverage and independence test. In other words, the model risk 

boosts when significance level decreases. This suggests that the extreme quantiles 

proposed by some authorities are not necessary the best solution since the model 

risk also soars.  

For the both indexes, the optimal capital adjustment q of VaR (99%) is alomost 4 

times of the adjustment of VaR(95%). Boucher et al.(2014) suggest that the 

relationship the relationship between the capital adjustment q and probability of 

VaR is not lineal. Further study could focus on the components that impact such 

increae. Further study could focus on the components that impact such increae. 
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DJI  VaR(95%) 

 

Table 11 

DJI  VaR(99%) 

For VaR at significance level 99%, as usual, the GARCH family models result in less 

capital adjustment q than historical simulation and normal distribution method. The 

historical simulation and normal distribution method are not desirable since they 

require too much capital when it is unnesessary and not sufficient capital in the 

times of crisis. In general, for all modes, the capital adjustment is mostly negative 

and can reach -4%. The excessive requirement is not recommanded since it 

undermines the profitability of financial institutions.  

 

Table 12 

 

Figure 74 

sGARCH eGARCH gjrGARCH tGARCH historical Normal Average_GARCH

-0.23% -0.22% -0.23% -0.26% -0.38% -0.47% -0.24%

0.27% 0.31% 0.28% 0.30% 0.56% 0.65% 0.28%

0.19% 0.35% 0.23% 0.21% 0.47% 0.51% 0.18%

-0.28% -0.31% -0.28% -0.31% -0.59% -0.68% -0.29%

0.20% 0.29% 0.22% 0.22% 0.60% 0.64% 0.21%

sGARCH eGARCH gjrGARCH tGARCH historical Normal Average_GARCH

-0.81% -0.79% -0.78% -0.81% -1.56% -1.16% -0.80%

0.82% 0.79% 0.79% 0.81% 1.57% 1.22% 0.80%

0.27% 0.16% 0.20% 0.05% 0.24% 0.59% 0.17%

-0.82% -0.79% -0.80% -0.82% -1.60% -1.26% -0.80%

0.28% 0.29% 0.26% 0.28% 0.95% 0.77% 0.25%
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Figure 75 

GSPC  VaR(95%) 

 

Table 13 

GSPC  VaR(99%) 

For GSPC index, similar conclusions can be drawn. For VaR at significance level 99%, 

the GARCH family models outpeforms historical simulation and normal distribution 

method. The historical simulation and normal distribution method are not desirable 

since they require too much capital when it is unnesessary and not sufficient capital 

in the times of crisis. In general, for all modes, the capital adjustment is mostly 

negative and can reach -4%. The excessive requirement is not recommanded since it 

undermines the profitability of financial institutions. 

 

Table 14 
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sGARCH eGARCH gjrGARCH tGARCH historical Normal Average_GARCH

-0.22% -0.20% -0.23% -0.23% -0.21% -0.26% -0.22%

0.24% 0.24% 0.24% 0.25% 0.41% 0.44% 0.24%

0.15% 0.22% 0.20% 0.20% 0.41% 0.36% 0.12%

-0.24% -0.25% -0.24% -0.26% -0.42% -0.47% -0.25%

0.17% 0.20% 0.17% 0.18% 0.48% 0.48% 0.16%

sGARCH eGARCH gjrGARCH tGARCH historical Normal Average_GARCH

-0.75% -0.71% -0.74% -0.74% -1.14% -0.92% -0.74%

0.75% 0.71% 0.74% 0.74% 1.15% 0.97% 0.74%

2.57% 0.08% 2.55% 0.00% 0.17% 0.56% 0.46%

-0.75% -0.72% -0.74% -0.74% -1.17% -0.99% -0.74%

0.25% 0.25% 0.23% 0.25% 0.81% 0.65% 0.23%
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Figure 76 

 

Figure 77 

5.6 Adjustment q – influence of window size for historical simulations  

As discussed in the methodology part, the results of the VaR estimation depends a 

lot on the window size of the historical simulations. The selection of the correct 

window size is a delicate issue since the quantile estimator only is consistent when 

the window size is infinite. 

In this paper, VaR forecasts and optimal capital adjustment are measured for four-

year window and ten-year window. The results and analysis are presented below.  

DJI (5%) 

For VaR estimates at significance level 5%, the simulation results of ten-year window 

shows less volatility than four-year window and the VaR forecasts result is also less 

aggressive. 

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

1
9

5
5

/2
/2

1
9

5
7

/2
/2

1
9

5
9

/2
/2

1
9

6
1

/2
/2

1
9

6
3

/2
/2

1
9

6
5

/2
/2

1
9

6
7

/2
/2

1
9

6
9

/2
/2

1
9

7
1

/2
/2

1
9

7
3

/2
/2

1
9

7
5

/2
/2

1
9

7
7

/2
/2

1
9

7
9

/2
/2

1
9

8
1

/2
/2

1
9

8
3

/2
/2

1
9

8
5

/2
/2

1
9

8
7

/2
/2

1
9

8
9

/2
/2

1
9

9
1

/2
/2

1
9

9
3

/2
/2

1
9

9
5

/2
/2

1
9

9
7

/2
/2

1
9

9
9

/2
/2

2
0

0
1

/2
/2

2
0

0
3

/2
/2

2
0

0
5

/2
/2

2
0

0
7

/2
/2

2
0

0
9

/2
/2

2
0

1
1

/2
/2

2
0

1
3

/2
/2

2
0

1
5

/2
/2

2
0

1
7

/2
/2

q - GARCH FAMILY (5%)

tgarch

sgarch

egarch

gjrgarch

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

1
9

5
5

/2
/2

1
9

5
7

/2
/2

1
9

5
9

/2
/2

1
9

6
1

/2
/2

1
9

6
3

/2
/2

1
9

6
5

/2
/2

1
9

6
7

/2
/2

1
9

6
9

/2
/2

1
9

7
1

/2
/2

1
9

7
3

/2
/2

1
9

7
5

/2
/2

1
9

7
7

/2
/2

1
9

7
9

/2
/2

1
9

8
1

/2
/2

1
9

8
3

/2
/2

1
9

8
5

/2
/2

1
9

8
7

/2
/2

1
9

8
9

/2
/2

1
9

9
1

/2
/2

1
9

9
3

/2
/2

1
9

9
5

/2
/2

1
9

9
7

/2
/2

1
9

9
9

/2
/2

2
0

0
1

/2
/2

2
0

0
3

/2
/2

2
0

0
5

/2
/2

2
0

0
7

/2
/2

2
0

0
9

/2
/2

2
0

1
1

/2
/2

2
0

1
3

/2
/2

2
0

1
5

/2
/2

2
0

1
7

/2
/2

q - ALL (5%)

Normal

Average_GARCH

historical



56 

Quantification of Model Risk with Bootstrapping Method 

 

Figure 78 

In general, the VaR forecasts of ten-year window requires less capital adjustment 

than the four year window, which demonstrates better stability and requires less 

capital.  

 

Figure 79 

 

Table 15 

GSPC (5%) 

For the GSPC index, the simulation results of ten-year window shows less volatility 

than four-year window and the VaR forecasts result is also less aggressive. The 

results tend to differ more along the time.  
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Figure 80 

For the GSPC index, the VaR estimates with ten-year window require more optimal 

capital adjustment when more capital is required to pass the test. In this case the 

four-year window is better and result in less volatile capital adjustment.  

 

Figure 81 
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Part VI Conclusion 

After the 2007 crisis, it has been widely acknowledged that insufficient 

understanding of model risk is one of the most critical reasons contributing to the 

failures of risk model.  The concept of model risk intrigues both academic world and 

financial institutions. Inspired by Boucher et al.(2014), this paper is devoted to 

finding an applicable method to quantify the model risk. In this paper, model risk is 

regarded as the excessive frequency of violation and clustering of the violations. 

Backtesting method with one-year window is used to search for an optimal capital 

adjustment for market prevalent VaR models, including GARCH family models, 

historical simulation and normal distribution method. The properties of the optimal 

capital adjustment are compared and analyzed  and it offers a perspective different 

from pure statistics measures.  

This paper uses Dow Jones Industrial Average (DJI) and S&P 500 (GSPC) indexes as 

sample Log return of each index is used as input for modeling and forecast process.  

After a series of analysis and comparison, GARCH (1,1) – ARMA(0,0) is adopted for 

DJI and GARCH (1,1) – ARMA(0,1) is employed for GSPC.  AIC and BIC statistics 

suggest that asymmetric GARCH models are better than standard GARCH model 

given the empirically observed asymmetric volatility.  

The VaR forecasts are then calculated using a four-year moving window (1020 

points). The parameters of the GARCH models were calibrated every single year (255 

points) since it is common in market practice. The frequency of hits (actual return < 

VaR forecasts) increases with significance level  α. Moreover, hits tend to cluster 

together especially when volatility is relatively high (e.g. in crisis era). 

The results of the non-parametric historical simulation and normal distribution are 

estimated with a four-year moving window as well. The frequency of hits increases 

with significance level  α and clustering of hits is observable in times of crisis. 

Although more restricted α level significantly lowers the frequency of hits, such 

improvement comes at the expense of excessive capital requirement when volatility 

is relatively low. Compared with the dynamic GARCH family models, the historical 

simulation method is insensitive to the sudden change of volatility. 

The results of VaR forecasts vary with different methodologies. Hence, it is crucial to 

select appropriate model which does not require unnecessary excessive capital and 

responds fast to the sudden rise of volatility.  

The concept of the optimal capital adjustment q is introduced in order to quantify 

the model selection criteria mentioned before. In this paper, an ideal model should 

not allow excessive hits of VaR forecasts and the hits should be independent to each 

other. In order to quantify these criteria, the backtesting technique is applied to 
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calculate the optimal capital adjustment q. The algorithm programmed is using a 

loop function to exhaustively search for the minimum q that can pass the conditional 

coverage and independence test. 

Generally speaking, the GARCH family VaR estimates work efficiently to predict the 

potential risk as the adjustment is usually negative and immaterial, while the 

adjustment q for historical simulation and normal distribution method demonstrates 

more volatility. Historical simulation and normal distribution methods adapt very 

slow to the sudden exchange of volatility. As a result, insufficient VaR forecasts are 

made during crisis while excessive capital is required after crisis.   

To our surprise, the standard GARCH model performs relatively well within GARCH 

family models. For the DJI index, it requires least capital adjustment q. For the GSPC 

index, it also performs well and results in stable capital adjustment q. The reason is 

that the optimal capital adjustment q in this paper takes into account frequency of 

the hit and the independence of the hit, while the magnitude of the hit is neglected. 

Further study could incorporate the magnitude criteria to study the its impact on the 

capital adjustment q. Also,  the standard GARCH model performs relatively well in 

independence test, while other GARCH family methods get penalized  for violation 

clustering.  

This paper also studies the relationship between model risk and significance level of 

VaR estimates. Compared with the optimal capital adjustment calculated for VaR at 

significance level 5%, VaR at significance level 1% requires more capital adjustment 

to pass the unconditional coverage and independence test. In other words, the 

model risk boosts when significance level decreases. Evidence suggests that the 

relationship is not lineal.  

Last but not least, the influence of window size for historical simulation is also 

studied, since the VaR forecasts vary a lot with distinct window size. For DJI index, 

the simulation results of ten-year window shows less volatility than four-year 

window and the VaR forecasts result is also less aggressive. Also, the VaR forecasts of 

ten-year window requires less capital adjustment than the four year window. For 

GPSC index, the four-year window is better since the VaR estimates with ten-year 

window require more optimal capital adjustment when more capital is required to 

pass the test. 

In summary, the optimal capital adjustment method offers an applicable method to 

quantify model risk. By tailoring the tests used in backtesting, it offers a subjective 

method to evaluate model risk and the choice can be made based on different 

aspects of the model performance. Also, by studying evolution of the optimal capital 

adjustment over time, the model owner can acquire a clear idea of the performance 

of various models in times of crisis.   



60 

Quantification of Model Risk with Bootstrapping Method 

Part VII Reference 

Alexander, C., & Sarabia, J. M. (2012). Quantile Uncertainty and Value-at-Risk Model 

Risk. Risk Analysis: An International Journal, 32(8), 1293-1308. 

doi:10.1111/j.1539-6924.2012.01824.x 

Awartani, B. M. A., Awartani, B. M. A., & Corradi, V. (2005). International journal of 

forecasting: Predicting the volatility of the S&P-500 stock index via GARCH 

models: The role of asymmetries Elsevier. 

doi:10.1016/j.ijforecast.2004.08.003 

Bollerslev, T. 1986, "Generalized Autoregressive Conditional 

Heteroskedasticity", Journal of Econometrics, vol. 31, no. 3, pp. 307-327. 

Boucher, C. M., Boucher, C. M., Danielsson, J., Kouontchou, P. S., & Maillet, B. B. 

(2014). Journal of banking & finance: Risk models-at-risk Elsevier. 

doi:10.1016/j.jbankfin.2014.03.019  

Christoffersen, P. (1998). Evaluating Interval Forecasts. International Economic 

Review, 39(4), 841-862. doi:10.2307/2527341 

Cont, R. (2006). MODEL UNCERTAINTY AND ITS IMPACT ON THE PRICING OF 

DERIVATIVE INSTRUMENTS. Mathematical Finance, 16(3), 519-547. 

doi:10.1111/j.1467-9965.2006.00281.x 

Engle, R. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the 

Variance of United Kingdom Inflation. Econometrica, 50(4), 987-1007. 

doi:10.2307/1912773 

Engle, R.F. & Bollerslev, T. 1986, "Modelling the Persistence of Conditional 

Variances", Econometric Reviews, vol. 5, no. 1, pp. 1-50. 

Fama, E.F. 2007, The Behavior of Stock-Market Prices, Elgar Reference Collection. 

International Library of Financial Econometrics, vol. 1. Cheltenham, U.K. and 

Northampton, Mass.: Elgar. 

Glosten, L., Jagannathan, R., & Runkle, D. (1993). On the Relation between the 

Expected Value and the Volatility of the Nominal Excess Return on 

Stocks. The Journal of Finance, 48(5), 1779-1801. doi:10.2307/2329067 

Green, T., & Figlewski, S. (1999). Market Risk and Model Risk for a Financial 

Institution Writing Options. The Journal of Finance,54(4), 1465-1499. 

Retrieved from http://www.jstor.org/stable/798011 

Hull, J., & Suo, W. (2002). A Methodology for Assessing Model Risk and Its 

Application to the Implied Volatility Function Model. The Journal of Financial 

and Quantitative Analysis, 37(2), 297-318. doi:10.2307/3595007 



61 

Quantification of Model Risk with Bootstrapping Method 

Mandelbrot, B. (1963). The journal of business (chicago, ill.): THE VARIATION OF 

CERTAIN SPECULATIVE PRICES University of Chicago Press. 

Manganelli, S. 2001, Value at risk models in finance, European Central Bank, Working 

Paper Series: 75. 

Smith, D. R., & Pérignon, C. (2010). Journal of banking & finance: The level and 

quality of value-at-risk disclosure by commercial banks Elsevier. 

Nelson, D. (1991). Conditional Heteroskedasticity in Asset Returns: A New 

Approach. Econometrica, 59(2), 347-370. doi:10.2307/2938260 

Zakoian, J. 1994, "Threshold Heteroskedastic Models", Journal of Economic Dynamics 

and Control, vol. 18, no. 5, pp. 931-955. 

 

 

 

  



62 

Quantification of Model Risk with Bootstrapping Method 

PART VIII Annex – R Program 

01. Data Collection 

#install.packages('quantmod') 

library('quantmod') 

setwd("C:/Users/Administrator/Dropbox/TFM/TFM/01.Data Collection") 

################################ 

#Start with Dow Jones and sp500# 

################################ 

#########DOW JONES - ticker ^DJI  

getSymbols("^DJI", from="1900-01-01", to="2017-04-27") 

chartSeries(Ad(DJI)) 

ld.DJI <- dailyReturn(Ad(DJI), type='log') 

chartSeries(ld.DJI) 

write.zoo(ld.DJI,"ld.DJI.csv",index.name="Date",sep=",") 

#########S&P500 - ticker ^GSPC 

getSymbols("^GSPC", from="1900-01-01", to="2017-04-27") 

chartSeries(Ad(GSPC)) 

ld.GSPC <- dailyReturn(Ad(GSPC), type='log') 

chartSeries(ld.GSPC) 

write.zoo(ld.GSPC,"ld.GSPC.csv",index.name="Date",sep=",") 

###########  PLOT ############## 

plot(y = DJI$'DJI.Adjusted',x = index(DJI$'DJI.Adjusted'),main = "DJI.Adjusted",type = "l", 

     ylab = "Index", xlab = "Date") 

plot(y = ld.DJI,x = index(ld.DJI),main = "DJI Log Return",type = "l", 

     ylab = "Index", xlab = "Date") 

 

02.1 Visualize data 

######################################### 
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#####LOAD DATA FROM 01.DATA COLLECTION### 

######################################### 

 

setwd("C:/Users/Administrator/Dropbox/TFM/TFM/01.Data Collection") 

 

ld.GSPC <- read.table("ld.GSPC.csv",header = TRUE,sep = ",") 

ld.DJI <- read.table("ld.DJI.csv",header = TRUE,sep = ",") 

 

########################################### 

##### RESET WORKING DIRECTORY FOR OUTPUT### 

########################################### 

setwd("C:/Users/Administrator/Dropbox/TFM/TFM/02.VaR - GARCH Family/02.1 Visualize 

data output") 

 

######### Get The Graph of Autoregressive feature ######### 

ld.GSPC <- ld.GSPC$daily.returns 

ld.DJI <- ld.DJI$daily.returns 

 

 

############ 

#####DJI#### 

############ 

 

par(mfrow=c(2,2)) #we overwrite the default plotting parameters of R which is mfrow=c(1,1) 

#to organize the four diagrams of interest in  

#a convenient table format: 

acf(ld.DJI, main="Return ACF");  #### tiene pinta de AR(1) 

pacf(ld.DJI, main="Return PACF"); 



64 

Quantification of Model Risk with Bootstrapping Method 

acf(ld.DJI^2, main="Squared return ACF"); 

pacf(ld.DJI^2, main="Squared return PACF") 

par(mfrow=c(1,1)) 

 

#Compare the empirical distribution with normal  

m=mean(ld.DJI);s=sd(ld.DJI); 

par(mfrow=c(1,2)) 

hist(ld.DJI, nclass=40, freq=FALSE, main='Return histogram');curve(dnorm(x, 

mean=m,sd=0.007), from = -0.3, to = 0.2, add=TRUE, col="red") 

plot(density(ld.DJI), main='Return empirical distribution');curve(dnorm(x, mean=m,sd=0.007), 

from = -0.3, to = 0.2, add=TRUE, col="red") 

par(mfrow=c(1,1)) #### El empirico parece que tiene la cola mas larga que normal 

 

#test of normality 

ks.test(ld.DJI,"pnorm",mean(ld.DJI),sd(ld.DJI)) 

library('moments') 

 

# tail zoom 

plot(density(ld.DJI), main='Return EDF - upper tail', xlim = c(0, 0.2), ylim=c(0,2)); 

curve(dnorm(x, mean=m,sd=s), from = -0.3, to = 0.2, add=TRUE, col="red") 

 

plot(density(ld.DJI), main='Return EDF - lower tail', xlim = c(-0.2, 0), ylim=c(0,2)); 

curve(dnorm(x, mean=m,sd=s), from = -0.3, to = 0.2, add=TRUE, col="red") 

 

#Common 2 tools to comparing density  

# density plots on log-scale 

plot(density(ld.DJI), xlim=c(-5*s,5*s),log='y', main='Density on log-scale') 

curve(dnorm(x, mean=m,sd=s), from=-5*s, to=5*s, log="y", add=TRUE, col="red") 
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# QQ-plot 

qqnorm(ld.DJI);qqline(ld.DJI) 

 

############ 

#####GSPC#### 

############ 

 

par(mfrow=c(2,2)) #we overwrite the default plotting parameters of R which is mfrow=c(1,1) 

#to organize the four diagrams of interest in  

#a convenient table format: 

acf(ld.GSPC, main="Return ACF");  #### tiene pinta de AR(1) 

pacf(ld.GSPC, main="Return PACF"); 

acf(ld.GSPC^2, main="Squared return ACF"); 

pacf(ld.GSPC^2, main="Squared return PACF") 

par(mfrow=c(1,1)) 

 

#Compare the empirical distribution with normal  

m=mean(ld.GSPC);s=sd(ld.GSPC); 

par(mfrow=c(1,2)) 

hist(ld.GSPC, nclass=40, freq=FALSE, main='Return histogram');curve(dnorm(x, 

mean=m,sd=0.007), from = -0.3, to = 0.2, add=TRUE, col="red") 

plot(density(ld.GSPC), main='Return empirical distribution');curve(dnorm(x, 

mean=m,sd=0.007), from = -0.3, to = 0.2, add=TRUE, col="red") 

par(mfrow=c(1,1)) #### El empirico parece que tiene la cola mas larga que normal 

 

#test of normality 

ks.test(ld.GSPC,"pnorm",mean(ld.GSPC),sd(ld.GSPC)) 
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# tail zoom 

plot(density(ld.GSPC), main='Return EDF - upper tail', xlim = c(0, 0.2), ylim=c(0,2)); 

curve(dnorm(x, mean=m,sd=s), from = -0.3, to = 0.2, add=TRUE, col="red") 

 

plot(density(ld.GSPC), main='Return EDF - lower tail', xlim = c(-0.2, 0), ylim=c(0,2)); 

curve(dnorm(x, mean=m,sd=s), from = -0.3, to = 0.2, add=TRUE, col="red") 

 

#Common 2 tools to comparing density  

# density plots on log-scale 

plot(density(ld.GSPC), xlim=c(-5*s,5*s),log='y', main='Density on log-scale') 

curve(dnorm(x, mean=m,sd=s), from=-5*s, to=5*s, log="y", add=TRUE, col="red") 

 

# QQ-plot 

qqnorm(ld.GSPC);qqline(ld.GSPC) 

 

 

plot(y = GSPC$'GSPC.Adjusted',x = index(GSPC$'GSPC.Adjusted'),main = 

"GSPC.Adjusted",type = "l", 

     ylab = "Index", xlab = "Date") 

 

plot(y = ld.GSPC,x = index(ld.GSPC),main = "GSPC Log Return",type = "l", 

     ylab = "Index", xlab = "Date") 

02.2 & 02.3 GARCH FAMILY VAR 

######################################### 

#####LOAD DATA FROM 01.DATA COLLECTION### 

######################################### 
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setwd("C:/Users/Administrator/Dropbox/TFM/TFM/01.Data Collection") 

 

ld.DJI <- read.table("ld.DJI.csv",header = TRUE,sep = ",") 

ld.GSPC <- read.table("ld.GSPC.csv",header = TRUE,sep = ",") 

 

#colnames(ld.DJI)[2] <- "ld.DJI" 

#colnames(ld.GSPC)[2] <- "ld.GSPC" 

 

########################################### 

##### RESET WORKING DIRECTORY FOR OUTPUT### 

########################################### 

setwd("C:/Users/Administrator/Dropbox/TFM/TFM/02.VaR - GARCH Family/02.2GF VAR DJI 

output") 

 

#install.packages("rugarch") 

library("rugarch") 

library("scales") 

 

################################################################### 

#first, we have to specify a model as a system object (variable),# 

#which in turn will be inserted into the respective function.######  

#Models can be specified by calling ugarchspec().################## 

################################################################### 

 

######################################################## 

######### ar1, garch (1,1), normal, standard ########### 

######################################################## 
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garch11_ar1.spec = ugarchspec(variance.model = list(model="sGARCH", garchOrder=c(1,1)),  

                          mean.model = list(armaOrder=c(1,0))) #Tiene la pinta de ar(1) 

 

DJI.garch11_ar1.fit = ugarchfit(spec=garch11_ar1.spec, data=ld.DJI$daily.returns) 

DJI.garch11_ar1.fit ##result, the AR1 compenent is not significant.  

 

############################################################## 

######### arma(0,0), garch (1,1), normal, standard ########### 

############################################################## 

 

garch11.spec = ugarchspec(variance.model = list(model="sGARCH", garchOrder=c(1,1)),  

                          mean.model = list(armaOrder=c(0,0)))  

 

DJI.garch11.fit = ugarchfit(spec=garch11.spec, data=ld.DJI$daily.returns) 

DJI.garch11.fit  

 

#save(DJI.garch11.fit, file = "DJI.garch11.fit.rda") 

 

 

plot(residuals(DJI.garch11.fit),col=alpha("red", 0.5)) 

 

##plot the change in conditional volatility against shocks in different sizes,  

##and can concisely express the asymmetric effects in volatility.  

ni.garch11 <- newsimpact(DJI.garch11.fit) 

plot(ni.garch11$zx, ni.garch11$zy, type="l", lwd=2,  

     col="blue", main="GARCH(1,1) - News Impact",  

     ylab=ni.garch11$yexpr, xlab=ni.garch11$xexpr)  
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############################################################## 

######################### igarch ############################# 

############################################################## 

 

garch11i.spec = ugarchspec(variance.model = list(model="iGARCH", garchOrder=c(1,1)),  

                           mean.model = list(armaOrder=c(0,0))) 

DJI.garch11i.fit = ugarchfit(spec=garch11i.spec, data=ld.DJI$daily.returns) 

DJI.garch11i.fit  

 

#save(DJI.garch11i.fit, file = "DJI.garch11i.fit.rda") 

plot(residuals(DJI.garch11i.fit),col=alpha("red", 0.5)) 

 

##unable to plot the change in conditional volatility against shocks in different sizes,  

 

 

############################################################## 

######################### egarch ############################# 

############################################################## 

 

garch11e.spec = ugarchspec(variance.model = list(model="eGARCH", garchOrder=c(1,1)),  

                           mean.model = list(armaOrder=c(0,0))) 

DJI.garch11e.fit = ugarchfit(spec=garch11e.spec, data=ld.DJI$daily.returns) 

DJI.garch11e.fit  

 

#save(DJI.garch11e.fit, file = "DJI.garch11e.fit.rda") 
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plot(residuals(DJI.garch11e.fit),col=alpha("red", 0.5)) 

 

##plot the change in conditional volatility against shocks in different sizes,  

##and can concisely express the asymmetric effects in volatility.  

ni.garch11 <- newsimpact(DJI.garch11e.fit) 

plot(ni.garch11$zx, ni.garch11$zy, type="l", lwd=2,  

     col="blue", main="GARCH(1,1) - News Impact",  

     ylab=ni.garch11$yexpr, xlab=ni.garch11$xexpr)  

 

 

################################################################# 

######################### gjr garch ############################# 

################################################################# 

#gjrgarch 

garch11gjr.spec = ugarchspec(variance.model = list(model="gjrGARCH", garchOrder=c(1,1)),  

                           mean.model = list(armaOrder=c(0,0)))  

 

DJI.garch11gjr.fit = ugarchfit(spec=garch11gjr.spec, data=ld.DJI$daily.returns) 

DJI.garch11gjr.fit 

 

#save(DJI.garch11gjr.fit, file = "DJI.garch11gjr.fit.rda") 

plot(residuals(DJI.garch11gjr.fit),col=alpha("red", 0.5)) 

 

##plot the change in conditional volatility against shocks in different sizes,  

##and can concisely express the asymmetric effects in volatility.  

ni.garch11 <- newsimpact(DJI.garch11gjr.fit) 

plot(ni.garch11$zx, ni.garch11$zy, type="l", lwd=2,  
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     col="blue", main="GARCH(1,1) - News Impact",  

     ylab=ni.garch11$yexpr, xlab=ni.garch11$xexpr)  

 

#gjr garch is restricted form of sgarch, so likelihood ratio test can be applied here 

 

LRst <- 2*(DJI.garch11.fit@fit$LLH-DJI.garch11gjr.fit@fit$LLH) 

pchisq(q=LRst,df=1) #gjrgarch is better here!! Intuitively make sense 

 

################################################################# 

######################### threshold garch ####################### 

################################################################# 

#tgarch 

garch11t.spec = ugarchspec(variance.model = list(model="fGARCH", 

garchOrder=c(1,1),submodel='TGARCH'),  

                             mean.model = list(armaOrder=c(0,0)))  

 

DJI.garch11t.fit = ugarchfit(spec=garch11t.spec, data=ld.DJI$daily.returns) 

DJI.garch11t.fit 

 

#save(DJI.garch11t.fit, file = "DJI.garch11t.fit.rda") 

 

plot(residuals(DJI.garch11t.fit),col=alpha("red", 0.5)) 

 

##plot the change in conditional volatility against shocks in different sizes,  

##and can concisely express the asymmetric effects in volatility.  

ni.garch11 <- newsimpact(DJI.garch11t.fit) 

plot(ni.garch11$zx, ni.garch11$zy, type="l", lwd=2,  

     col="blue", main="GARCH(1,1) - News Impact",  
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     ylab=ni.garch11$yexpr, xlab=ni.garch11$xexpr)  

 

 

############################################################## 

############### Get various GARCH MODEL FIT DIRECTLY ######### 

############################################################## 

 

setwd("C:/Users/Administrator/Dropbox/TFM/TFM/02.VaR - GARCH Family/02.2GF VAR DJI 

output") 

install.packages("scales") 

 

#sgarch 

load(file = "DJI.garch11.fit.rda") 

 

#igarch 

load(file = "DJI.garch11i.fit.rda") 

 

#egarch 

load(file = "DJI.garch11e.fit.rda") 

 

#GJR GARCH  

load(file = "DJI.garch11gjr.fit.rda") 

 

#TGARCH  

load(file = "DJI.garch11t.fit.rda") 

 

#################################################################### 

################## SOME USEFUL COMMANDS ############################ 
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#################################################################### 

 

coef(DJI.garch11.fit)          #estimated coefficients 

vcov(DJI.garch11.fit)          #covariance matrix of param estimates 

infocriteria(DJI.garch11.fit)  #common information criteria list 

newsimpact(DJI.garch11.fit)    #calculate news impact curve 

signbias(DJI.garch11.fit)      #Engle - Ng sign bias test 

fitted(DJI.garch11.fit)        #obtain the fitted data series 

residuals(DJI.garch11.fit)     #obtain the residuals 

uncvariance(DJI.garch11.fit)   #unconditional (long-run) variance 

uncmean(DJI.garch11.fit)       #unconditional (long-run) mean 

######################################### 

#####LOAD DATA FROM 01.DATA COLLECTION### 

######################################### 

 

setwd("C:/Users/Administrator/Dropbox/TFM/TFM/01.Data Collection") 

 

ld.DJI <- read.table("ld.DJI.csv",header = TRUE,sep = ",") 

ld.GSPC <- read.table("ld.GSPC.csv",header = TRUE,sep = ",") 

 

 

 

########################################### 

##### RESET WORKING DIRECTORY FOR OUTPUT### 

########################################### 

setwd("C:/Users/Administrator/Dropbox/TFM/TFM/02.VaR - GARCH Family/02.3GF VAR 

GSPC output") 
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#install.packages("rugarch") 

library("rugarch") 

library("scales") 

 

 

############################################################## 

######### arma(0,1), garch (1,1), normal, standard ########### 

############################################################## 

 

garch11.spec = ugarchspec(variance.model = list(model="sGARCH", garchOrder=c(1,1)),  

                          mean.model = list(armaOrder=c(0,1)))  

 

GSPC.garch11.fit = ugarchfit(spec=garch11.spec, data=ld.GSPC$daily.returns,solver = 

"hybrid") 

GSPC.garch11.fit  

 

#save(GSPC.garch11.fit, file = "GSPC.garch11.fit.rda") 

 

 

plot(residuals(GSPC.garch11.fit),col=alpha("red", 0.5)) 

 

##plot the change in conditional volatility against shocks in different sizes,  

##and can concisely express the asymmetric effects in volatility.  

ni.garch11 <- newsimpact(GSPC.garch11.fit) 

plot(ni.garch11$zx, ni.garch11$zy, type="l", lwd=2,  

     col="blue", main="GARCH(1,1) - News Impact",  

     ylab=ni.garch11$yexpr, xlab=ni.garch11$xexpr)  
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############################################################## 

######################### igarch ############################# 

############################################################## 

 

garch11i.spec = ugarchspec(variance.model = list(model="iGARCH", garchOrder=c(1,1)),  

                           mean.model = list(armaOrder=c(0,1))) 

GSPC.garch11i.fit = ugarchfit(spec=garch11i.spec, data=ld.GSPC$daily.returns) 

GSPC.garch11i.fit  

 

#save(GSPC.garch11i.fit, file = "GSPC.garch11i.fit.rda") 

plot(residuals(GSPC.garch11i.fit),col=alpha("red", 0.5)) 

 

##unable to plot the change in conditional volatility against shocks in different sizes,  

 

 

############################################################## 

######################### egarch ############################# 

############################################################## 

 

garch11e.spec = ugarchspec(variance.model = list(model="eGARCH", garchOrder=c(1,1)),  

                           mean.model = list(armaOrder=c(0,1))) 

GSPC.garch11e.fit = ugarchfit(spec=garch11e.spec, data=ld.GSPC$daily.returns) 

GSPC.garch11e.fit  

 

#save(GSPC.garch11e.fit, file = "GSPC.garch11e.fit.rda") 

 

plot(residuals(GSPC.garch11e.fit),col=alpha("red", 0.5)) 
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##plot the change in conditional volatility against shocks in different sizes,  

##and can concisely express the asymmetric effects in volatility.  

ni.garch11 <- newsimpact(GSPC.garch11e.fit) 

plot(ni.garch11$zx, ni.garch11$zy, type="l", lwd=2,  

     col="blue", main="GARCH(1,1) - News Impact",  

     ylab=ni.garch11$yexpr, xlab=ni.garch11$xexpr)  

 

 

################################################################# 

######################### gjr garch ############################# 

################################################################# 

#gjrgarch 

garch11gjr.spec = ugarchspec(variance.model = list(model="gjrGARCH", garchOrder=c(1,1)),  

                             mean.model = list(armaOrder=c(0,1)))  

 

GSPC.garch11gjr.fit = ugarchfit(spec=garch11gjr.spec, data=ld.GSPC$daily.returns) 

GSPC.garch11gjr.fit 

 

#save(GSPC.garch11gjr.fit, file = "GSPC.garch11gjr.fit.rda") 

plot(residuals(GSPC.garch11gjr.fit),col=alpha("red", 0.5)) 

 

##plot the change in conditional volatility against shocks in different sizes,  

##and can concisely express the asymmetric effects in volatility.  

ni.garch11 <- newsimpact(GSPC.garch11gjr.fit) 

plot(ni.garch11$zx, ni.garch11$zy, type="l", lwd=2,  

     col="blue", main="GARCH(1,1) - News Impact",  
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     ylab=ni.garch11$yexpr, xlab=ni.garch11$xexpr)  

 

#gjr garch is restricted form of sgarch, so likelihood ratio test can be applied here 

 

LRst <- 2*(GSPC.garch11.fit@fit$LLH-GSPC.garch11gjr.fit@fit$LLH) 

pchisq(q=LRst,df=1) #gjrgarch is better here!! Intuitively make sense 

 

################################################################# 

######################### threshold garch ####################### 

################################################################# 

#tgarch 

garch11t.spec = ugarchspec(variance.model = list(model="fGARCH", 

garchOrder=c(1,1),submodel='TGARCH'),  

                           mean.model = list(armaOrder=c(0,1)))  

 

GSPC.garch11t.fit = ugarchfit(spec=garch11t.spec, data=ld.GSPC$daily.returns) 

GSPC.garch11t.fit 

 

#save(GSPC.garch11t.fit, file = "GSPC.garch11t.fit.rda") 

 

plot(residuals(GSPC.garch11t.fit),col=alpha("red", 0.5)) 

 

##plot the change in conditional volatility against shocks in different sizes,  

##and can concisely express the asymmetric effects in volatility.  

ni.garch11 <- newsimpact(GSPC.garch11t.fit) 

plot(ni.garch11$zx, ni.garch11$zy, type="l", lwd=2,  

     col="blue", main="GARCH(1,1) - News Impact",  

     ylab=ni.garch11$yexpr, xlab=ni.garch11$xexpr)  
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02.4 4 YR rolling VaR 

######################################### 

#####LOAD DATA FROM internet ############ 

######################################### 

 

library('quantmod') 

 

getSymbols("^DJI", from="1900-01-01", to="2017-04-27") 

chartSeries(Ad(DJI)) 

 

ld.DJI <- dailyReturn(Ad(DJI), type='log') 

chartSeries(ld.DJI) 

 

getSymbols("^GSPC", from="1900-01-01", to="2017-04-27") 

chartSeries(Ad(GSPC)) 

 

ld.GSPC <- dailyReturn(Ad(GSPC), type='log') 

chartSeries(ld.GSPC) 

 

########################################### 

##### SET WORKING DIRECTORY FOR OUTPUT### 

########################################### 

setwd("C:/Users/Administrator/Dropbox/TFM/TFM/02.VaR - GARCH Family/02.4 4YR Rolling 

VAR output") 

 

########################################### 

########## ROLLING ESTIMATION ############# 
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########################################### 

 

library("rugarch") 

#install.packages("snowfall") 

library("snowfall") 

 

########################################### 

#################### DJI ################## 

########################################### 

 

 

####sGARCH##### 

spec = ugarchspec(variance.model = list(model="sGARCH", garchOrder=c(1,1)),  

                          mean.model = list(armaOrder=c(0,0)))  

 

#moving window: 4 years, refit every year, days per year:255 

roll_DJI_s = ugarchroll(spec, data = ld.DJI, n.ahead = 1,  

                        n.start = 1020,  refit.every = 255, refit.window = "moving",  

                        solver = "hybrid", fit.control = list(), parallel = TRUE, 

                        parallel.control = list(pkg = "snowfall", cores = 6), 

                        calculate.VaR = TRUE, VaR.alpha = c(0.01, 0.025, 0.05), 

                        keep.coef = FALSE) 

 

#report(roll_DJI_s, type = "VaR", VaR.alpha = 0.01, conf.level = 0.95) 

save(roll_DJI_s, file = "roll_DJI_s.rda") 

 

DJI_s_var<-roll_DJI_s@forecast$VaR 
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save(DJI_s_var, file = "DJI_s_var.rda") 

 

#report(roll_DJI_s, type="fpm") 

 

# Fit Diagnostics 

 

plot(roll_DJI_s,which=4,VaR.alpha=0.01) 

plot(roll_DJI_s,which=4,VaR.alpha=0.025) 

plot(roll_DJI_s,which=4,VaR.alpha=0.05) 

 

####eGARCH##### 

spec = ugarchspec(variance.model = list(model="eGARCH", garchOrder=c(1,1)),  

                  mean.model = list(armaOrder=c(0,0)))  

 

#moving window: 4 years, refit every year, days per year:255 

roll_DJI_e = ugarchroll(spec, data = ld.DJI, n.ahead = 1,  

                        n.start = 1020,  refit.every = 255, refit.window = "moving",  

                        solver = "hybrid", fit.control = list(), parallel = TRUE, 

                        parallel.control = list(pkg = "snowfall", cores = 6), 

                        calculate.VaR = TRUE, VaR.alpha = c(0.01, 0.025, 0.05), 

                        keep.coef = FALSE) 

 

#report(roll_DJI_e, type = "VaR", VaR.alpha = 0.01, conf.level = 0.95) 

save(roll_DJI_e, file = "roll_DJI_e.rda") 

 

DJI_e_var<-roll_DJI_e@forecast$VaR 

save(DJI_e_var, file = "DJI_e_var.rda") 
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#report(roll_DJI_e, type="fpm") 

 

# Fit Diagnostics 

 

plot(roll_DJI_e,which=4,VaR.alpha=0.01) 

plot(roll_DJI_e,which=4,VaR.alpha=0.025) 

plot(roll_DJI_e,which=4,VaR.alpha=0.05) 

 

####gjrGARCH##### 

spec = ugarchspec(variance.model = list(model="gjrGARCH", garchOrder=c(1,1)),  

                  mean.model = list(armaOrder=c(0,0)))  

 

#moving window: 4 years, refit every year, days per year:255 

roll_DJI_gjr = ugarchroll(spec, data = ld.DJI, n.ahead = 1,  

                        n.start = 1020,  refit.every = 255, refit.window = "moving",  

                        solver = "hybrid", fit.control = list(), parallel = TRUE, 

                        parallel.control = list(pkg = "snowfall", cores = 6), 

                        calculate.VaR = TRUE, VaR.alpha = c(0.01, 0.025, 0.05), 

                        keep.coef = FALSE) 

 

#report(roll_DJI_e, type = "VaR", VaR.alpha = 0.01, conf.level = 0.95) 

save(roll_DJI_gjr, file = "roll_DJI_gjr.rda") 

 

DJI_gjr_var<-roll_DJI_gjr@forecast$VaR 

save(DJI_gjr_var, file = "DJI_gjr_var.rda") 
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#report(roll_DJI_gjr, type="fpm") 

 

# Fit Diagnostics 

 

plot(roll_DJI_gjr,which=4,VaR.alpha=0.01) 

plot(roll_DJI_gjr,which=4,VaR.alpha=0.025) 

plot(roll_DJI_gjr,which=4,VaR.alpha=0.05) 

 

#### threshold GARCH ##### 

spec = ugarchspec(variance.model = list(model="fGARCH", 

garchOrder=c(1,1),submodel='TGARCH'),  

                  mean.model = list(armaOrder=c(0,0)))  

 

#moving window: 4 years, refit every year, days per year:255 

roll_DJI_t = ugarchroll(spec, data = ld.DJI, n.ahead = 1,  

                          n.start = 1020,  refit.every = 255, refit.window = "moving",  

                          solver = "hybrid", fit.control = list(), parallel = TRUE, 

                          parallel.control = list(pkg = "snowfall", cores = 6), 

                          calculate.VaR = TRUE, VaR.alpha = c(0.01, 0.025, 0.05), 

                          keep.coef = FALSE) 

 

#report(roll_DJI_t, type = "VaR", VaR.alpha = 0.01, conf.level = 0.95) 

save(roll_DJI_t, file = "roll_DJI_t.rda") 

 

DJI_t_var<-roll_DJI_t@forecast$VaR 

save(DJI_t_var, file = "DJI_t_var.rda") 

 

#report(roll_DJI_t, type="fpm") 
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# Fit Diagnostics 

 

plot(roll_DJI_t,which=4,VaR.alpha=0.01) 

plot(roll_DJI_t,which=4,VaR.alpha=0.025) 

plot(roll_DJI_t,which=4,VaR.alpha=0.05) 

 

 

########################################### 

#################### GSPC ################## 

########################################### 

 

 

####sGARCH##### 

spec = ugarchspec(variance.model = list(model="sGARCH", garchOrder=c(1,1)),  

                  mean.model = list(armaOrder=c(0,1)))  

 

#moving window: 4 years, refit every year, days per year:255 

roll_GSPC_s = ugarchroll(spec, data = ld.GSPC, n.ahead = 1,  

                        n.start = 1020,  refit.every = 255, refit.window = "moving",  

                        solver = "hybrid", fit.control = list(), parallel = TRUE, 

                        parallel.control = list(pkg = "snowfall", cores = 6), 

                        calculate.VaR = TRUE, VaR.alpha = c(0.01, 0.025, 0.05), 

                        keep.coef = FALSE) 

 

#report(roll_GSPC_s, type = "VaR", VaR.alpha = 0.01, conf.level = 0.95) 

save(roll_GSPC_s, file = "roll_GSPC_s.rda") 
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GSPC_s_var<-roll_GSPC_s@forecast$VaR 

save(GSPC_s_var, file = "GSPC_s_var.rda") 

 

#report(roll_GSPC_s, type="fpm") 

 

# Fit Diagnostics 

 

plot(roll_GSPC_s,which=4,VaR.alpha=0.01) 

plot(roll_GSPC_s,which=4,VaR.alpha=0.025) 

plot(roll_GSPC_s,which=4,VaR.alpha=0.05) 

 

####eGARCH##### 

spec = ugarchspec(variance.model = list(model="eGARCH", garchOrder=c(1,1)),  

                  mean.model = list(armaOrder=c(0,1)))  

 

#moving window: 4 years, refit every year, days per year:255 

roll_GSPC_e = ugarchroll(spec, data = ld.GSPC, n.ahead = 1,  

                        n.start = 1020,  refit.every = 255, refit.window = "moving",  

                        solver = "hybrid", fit.control = list(), parallel = TRUE, 

                        parallel.control = list(pkg = "snowfall", cores = 6), 

                        calculate.VaR = TRUE, VaR.alpha = c(0.01, 0.025, 0.05), 

                        keep.coef = FALSE) 

 

#report(roll_GSPC_e, type = "VaR", VaR.alpha = 0.01, conf.level = 0.95) 

save(roll_GSPC_e, file = "roll_GSPC_e.rda") 
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GSPC_e_var<-roll_GSPC_e@forecast$VaR 

save(GSPC_e_var, file = "GSPC_e_var.rda") 

 

#report(roll_GSPC_e, type="fpm") 

 

# Fit Diagnostics 

 

plot(roll_GSPC_e,which=4,VaR.alpha=0.01) 

plot(roll_GSPC_e,which=4,VaR.alpha=0.025) 

plot(roll_GSPC_e,which=4,VaR.alpha=0.05) 

 

####gjrGARCH##### 

spec = ugarchspec(variance.model = list(model="gjrGARCH", garchOrder=c(1,1)),  

                  mean.model = list(armaOrder=c(0,1)))  

 

#moving window: 4 years, refit every year, days per year:255 

roll_GSPC_gjr = ugarchroll(spec, data = ld.GSPC, n.ahead = 1,  

                          n.start = 1020,  refit.every = 255, refit.window = "moving",  

                          solver = "hybrid", fit.control = list(), parallel = TRUE, 

                          parallel.control = list(pkg = "snowfall", cores = 6), 

                          calculate.VaR = TRUE, VaR.alpha = c(0.01, 0.025, 0.05), 

                          keep.coef = FALSE) 

 

#report(roll_GSPC_e, type = "VaR", VaR.alpha = 0.01, conf.level = 0.95) 

save(roll_GSPC_gjr, file = "roll_GSPC_gjr.rda") 

 

GSPC_gjr_var<-roll_GSPC_gjr@forecast$VaR 
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save(GSPC_gjr_var, file = "GSPC_gjr_var.rda") 

 

#report(roll_GSPC_gjr, type="fpm") 

 

# Fit Diagnostics 

 

plot(roll_GSPC_gjr,which=4,VaR.alpha=0.01) 

plot(roll_GSPC_gjr,which=4,VaR.alpha=0.025) 

plot(roll_GSPC_gjr,which=4,VaR.alpha=0.05) 

 

#### threshold GARCH ##### 

spec = ugarchspec(variance.model = list(model="fGARCH", 

garchOrder=c(1,1),submodel='TGARCH'),  

                  mean.model = list(armaOrder=c(0,1)))  

 

#moving window: 4 years, refit every year, days per year:255 

roll_GSPC_t = ugarchroll(spec, data = ld.GSPC, n.ahead = 1,  

                        n.start = 1020,  refit.every = 255, refit.window = "moving",  

                        solver = "hybrid", fit.control = list(), parallel = TRUE, 

                        parallel.control = list(pkg = "snowfall", cores = 6), 

                        calculate.VaR = TRUE, VaR.alpha = c(0.01, 0.025, 0.05), 

                        keep.coef = FALSE) 

 

#report(roll_GSPC_t, type = "VaR", VaR.alpha = 0.01, conf.level = 0.95) 

save(roll_GSPC_t, file = "roll_GSPC_t.rda") 

 

GSPC_t_var<-roll_GSPC_t@forecast$VaR 

save(GSPC_t_var, file = "GSPC_t_var.rda") 
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#report(roll_GSPC_t, type="fpm") 

 

# Fit Diagnostics 

 

plot(roll_GSPC_t,which=4,VaR.alpha=0.01) 

plot(roll_GSPC_t,which=4,VaR.alpha=0.025) 

plot(roll_GSPC_t,which=4,VaR.alpha=0.05) 

03.1 HIT&DEPENDENCE 

########################################### 

##### LOAD WORKING DIRECTORY FOR INPUT#### 

########################################### 

setwd("C:/Users/Administrator/Dropbox/TFM/TFM/02.VaR - GARCH Family/02.4 4YR Rolling 

VAR output") 

 

load(file = "DJI_s_var.rda") 

load(file = "DJI_e_var.rda") 

load(file = "DJI_gjr_var.rda") 

load(file = "DJI_t_var.rda") 

 

load(file = "GSPC_s_var.rda") 

load(file = "GSPC_e_var.rda") 

load(file = "GSPC_gjr_var.rda") 

load(file = "GSPC_t_var.rda") 

 

########################################### 

##### SET WORKING DIRECTORY FOR OUTPUT##### 

########################################### 
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setwd("C:/Users/Administrator/Dropbox/TFM/TFM/03. q - hit and independence/03.1 

Hit&Independence Output") 

 

########################################### 

##### CALCULATIN OF Q ADJUSTMENT ########## 

########################################### 

 

library("rugarch") 

 

######################################################### 

##### LOAD UP FUNCTION THAT WILL BE USED LATER ########## 

######################################################### 

 

#### OPEN R SCRIPT AND RUN:  

### 03.2 CCLRp LOOP FUNCTION 

 

############## DJI_s ############### 

q_DJI_S_1 <- cclrp_rolling(255,DJI_s_var$`alpha(1%)`,DJI_s_var$realized,0.01) 

q_DJI_s_1 <- q_DJI_S_1[1:6855] 

write.csv(q_DJI_s_1,file = "q_DJI_s_1.csv") 

 

q_DJI_s_25 <- cclrp_rolling(255,DJI_s_var$`alpha(2%)`,DJI_s_var$realized,0.025) 

q_DJI_s_25 <- q_DJI_s_25[1:6855] 

write.csv(q_DJI_s_25,file = "q_DJI_s_25.csv") 

 

q_DJI_s_5 <- cclrp_rolling(255,DJI_s_var$`alpha(5%)`,DJI_s_var$realized,0.05) 

q_DJI_s_25 <- q_DJI_s_25[1:6855] 
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write.csv(q_DJI_s_5,file = "q_DJI_s_5.csv") 

 

############### DJI_e ############### 

q_DJI_e_1 <- cclrp_rolling(255,DJI_e_var$`alpha(1%)`,DJI_e_var$realized,0.01) 

q_DJI_e_1 <- q_DJI_e_1[1:6855] 

write.csv(q_DJI_e_1,file = "q_DJI_e_1.csv") 

 

q_DJI_e_25 <- cclrp_rolling(255,DJI_s_var$`alpha(2%)`,DJI_e_var$realized,0.025) 

q_DJI_e_25 <- q_DJI_e_25[1:6855] 

write.csv(q_DJI_e_25,file = "q_DJI_e_25.csv") 

 

q_DJI_e_5 <- cclrp_rolling(255,DJI_s_var$`alpha(5%)`,DJI_e_var$realized,0.05) 

q_DJI_e_5 <- q_DJI_e_5[1:6855] 

write.csv(q_DJI_e_5,file = "q_DJI_e_5.csv") 

 

############### DJI_gjr ############### 

q_DJI_gjr_1 <- cclrp_rolling(255,DJI_gjr_var$`alpha(1%)`,DJI_gjr_var$realized,0.01) 

q_DJI_gjr_1 <- q_DJI_gjr_1[1:6855] 

write.csv(q_DJI_gjr_1,file = "q_DJI_gjr_1.csv") 

 

q_DJI_gjr_25 <- cclrp_rolling(255,DJI_s_var$`alpha(2%)`,DJI_gjr_var$realized,0.025) 

q_DJI_gjr_25 <- q_DJI_gjr_25[1:6855] 

write.csv(q_DJI_gjr_25,file = "q_DJI_gjr_25.csv") 

 

q_DJI_gjr_5 <- cclrp_rolling(255,DJI_s_var$`alpha(5%)`,DJI_gjr_var$realized,0.05) 

q_DJI_gjr_5 <- q_DJI_gjr_5[1:6855] 

write.csv(q_DJI_gjr_5,file = "q_DJI_gjr_5.csv") 
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############### DJI_t ############### 

q_DJI_t_1 <- cclrp_rolling(255,DJI_t_var$`alpha(1%)`,DJI_t_var$realized,0.01) 

q_DJI_t_1 <- q_DJI_t_1[1:6855] 

write.csv(q_DJI_t_1,file = "q_DJI_t_1.csv") 

 

q_DJI_t_25 <- cclrp_rolling(255,DJI_s_var$`alpha(2%)`,DJI_t_var$realized,0.025) 

q_DJI_t_25 <- q_DJI_t_25[1:6855] 

write.csv(q_DJI_t_25,file = "q_DJI_t_25.csv") 

 

q_DJI_t_5 <- cclrp_rolling(255,DJI_s_var$`alpha(5%)`,DJI_t_var$realized,0.05) 

q_DJI_t_5 <- q_DJI_t_5[1:6855] 

write.csv(q_DJI_t_5,file = "q_DJI_t_5.csv") 

 

 

############## GSPC_s ############### 

q_GSPC_s_1 <- cclrp_rolling(255,GSPC_s_var$`alpha(1%)`,GSPC_s_var$realized,0.01) 

q_GSPC_s_1 <- q_GSPC_s_1[1:15665] 

write.csv(q_GSPC_s_1,file = "q_GSPC_s_1.csv") 

 

q_GSPC_s_25 <- cclrp_rolling(255,GSPC_s_var$`alpha(2%)`,GSPC_s_var$realized,0.025) 

q_GSPC_s_25 <- q_GSPC_s_25[1:15665] 

write.csv(q_GSPC_s_25,file = "q_GSPC_s_25.csv") 

 

q_GSPC_s_5 <- cclrp_rolling(255,GSPC_s_var$`alpha(5%)`,GSPC_s_var$realized,0.05) 

q_GSPC_s_5 <- q_GSPC_s_5[1:15665] 

write.csv(q_GSPC_s_5,file = "q_GSPC_s_5.csv") 
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############### GSPC_e ############### 

q_GSPC_e_1 <- cclrp_rolling(255,GSPC_e_var$`alpha(1%)`,GSPC_e_var$realized,0.01) 

q_GSPC_e_1 <- q_GSPC_e_1[1:15665] 

write.csv(q_GSPC_e_1,file = "q_GSPC_e_1.csv") 

 

q_GSPC_e_25 <- cclrp_rolling(255,GSPC_s_var$`alpha(2%)`,GSPC_e_var$realized,0.025) 

q_GSPC_e_25 <- q_GSPC_e_25[1:15665] 

write.csv(q_GSPC_e_25,file = "q_GSPC_e_25.csv") 

 

q_GSPC_e_5 <- cclrp_rolling(255,GSPC_s_var$`alpha(5%)`,GSPC_e_var$realized,0.05) 

q_GSPC_e_5 <- q_GSPC_e_5[1:15665] 

write.csv(q_GSPC_e_5,file = "q_GSPC_e_5.csv") 

 

############### GSPC_gjr ############### 

q_GSPC_gjr_1 <- cclrp_rolling(255,GSPC_gjr_var$`alpha(1%)`,GSPC_gjr_var$realized,0.01) 

q_GSPC_gjr_1 <- q_GSPC_gjr_1[1:15665] 

write.csv(q_GSPC_gjr_1,file = "q_GSPC_gjr_1.csv") 

 

q_GSPC_gjr_25 <- cclrp_rolling(255,GSPC_s_var$`alpha(2%)`,GSPC_gjr_var$realized,0.025) 

q_GSPC_gjr_25 <- q_GSPC_gjr_25[1:15665] 

write.csv(q_GSPC_gjr_25,file = "q_GSPC_gjr_25.csv") 

 

q_GSPC_gjr_5 <- cclrp_rolling(255,GSPC_s_var$`alpha(5%)`,GSPC_gjr_var$realized,0.05) 

q_GSPC_gjr_5 <- q_GSPC_gjr_5[1:15665] 

write.csv(q_GSPC_gjr_5,file = "q_GSPC_gjr_5.csv") 
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############### GSPC_t ############### 

q_GSPC_t_1 <- cclrp_rolling(255,GSPC_t_var$`alpha(1%)`,GSPC_t_var$realized,0.01) 

q_GSPC_t_1 <- q_GSPC_t_1[1:15665] 

write.csv(q_GSPC_t_1,file = "q_GSPC_t_1.csv") 

 

q_GSPC_t_25 <- cclrp_rolling(255,GSPC_s_var$`alpha(2%)`,GSPC_t_var$realized,0.025) 

q_GSPC_t_25 <- q_GSPC_t_25[1:15665] 

write.csv(q_GSPC_t_25,file = "q_GSPC_t_25.csv") 

 

q_GSPC_t_5 <- cclrp_rolling(255,GSPC_s_var$`alpha(5%)`,GSPC_t_var$realized,0.05) 

q_GSPC_t_5 <- q_GSPC_t_5[1:15665] 

write.csv(q_GSPC_t_5,file = "q_GSPC_t_5.csv") 

 

 

cclrp_loop <- function(data,data_r,alpha_v){ 

   

  for (q in -200:5000){r <- VaRTest(alpha = alpha_v, VaR=data-q/10000, actual = data_r, 

conf.level = 0.95)  

  if(is.na(r$cc.LRp)){ 

    return((q-1)/10000) 

    break 

  }   

  if(r$cc.LRp > 0.05 ){ 

      return(q/10000) 

      break 

    } 

  } 

} 
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#Only adjust Var with result of previous 1 yr, which means period = 255 

 

cclrp_rolling <- function(period,data,data_r,alpha_v){ 

  n <- length(data) 

  result_q <-  vector(mode="numeric", length=n-period) 

  for(i in period+1:n){ 

    a <- i-period 

    b <- i-1 

    result_q[a] <- cclrp_loop(data[a:b],data_r[a:b],alpha_v) 

  } 

  return(result_q) 

} 

04.1&04.2 Non parametric VaR 

######################################### 

#####LOAD DATA FROM 01.DATA COLLECTION### 

######################################### 

 

setwd("C:/Users/Administrator/Dropbox/TFM/TFM/01.Data Collection") 

 

ld.DJI <- read.table("ld.DJI.csv",header = TRUE,sep = ",") 

ld.GSPC <- read.table("ld.GSPC.csv",header = TRUE,sep = ",") 

 

########################################### 

##### RESET WORKING DIRECTORY FOR OUTPUT### 

########################################### 
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setwd("C:/Users/Administrator/Dropbox/TFM/TFM/04.VaR - Non-parametric/04.1 Non 

parametric VaR output") 

 

#install.packages("PerformanceAnalytics") 

library("PerformanceAnalytics") 

 

###################################################### 

##### LOAD THE HISTORICAL VAR CALCULATION FUNCTION ### 

###################################################### 

 

#DJI 

var_his <- function(data,p,year){ 

  n <-length(data) 

  result <- vector(mode = "numeric",length = n - 255*year) 

  for (i in 1: (n-255*year)){ 

    result[i] <- VaR(data[i:(255*year+i-1)],p=p,method ="historical",portfolio_method = 

"single") 

  } 

  return(result) 

} 

#Historical Return 4 yrs & 10 yrs rolling window  

 

VaR_his_95_4 <- var_his(ld.DJI$daily.returns,p=0.95,year=4) 

VaR_his_975_4 <- var_his(ld.DJI$daily.returns,p=0.975,year=4) 

VaR_his_99_4 <- var_his(ld.DJI$daily.returns,p=0.99,year=4) 

 

VaR_his_4 <- as.data.frame(cbind(VaR_his_95_4,VaR_his_975_4,VaR_his_99_4)) 
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VaR_his_4 <- 

cbind(ld.DJI$Date[(255*4+1):length(ld.DJI$daily.returns)],VaR_his_4,ld.DJI$daily.returns[(25

5*4+1):length(ld.DJI$daily.returns)]) 

colnames(VaR_his_4) <- c("date","var_95","var_975","var_99","realized") 

#write.csv(VaR_his_4, file="DJI_VaR_his_4.csv") 

 

 

VaR_his_95_10 <- var_his(ld.DJI$daily.returns,p=0.95,year=10) 

VaR_his_975_10 <- var_his(ld.DJI$daily.returns,p=0.975,year=10) 

VaR_his_99_10 <- var_his(ld.DJI$daily.returns,p=0.99,year=10) 

 

VaR_his_10 <- as.data.frame(cbind(VaR_his_95_10,VaR_his_975_10,VaR_his_99_10)) 

VaR_his_10 <- 

cbind(ld.DJI$Date[(255*10+1):length(ld.DJI$daily.returns)],VaR_his_10,ld.DJI$daily.returns[(

255*10+1):length(ld.DJI$daily.returns)]) 

colnames(VaR_his_10) <- c("date","var_95","var_975","var_99","realized") 

#write.csv(VaR_his_10, file="DJI_VaR_his_10.csv") 

 

###################################################### 

##### LOAD THE NORMAL VAR CALCULATION FUNCTION ### 

###################################################### 

 

var_norm <- function(data,p,year){ 

  n <-length(data) 

  result <- vector(mode = "numeric",length = n - 255*year) 

  for (i in 1: (n-255*year)){ 

    result[i] <- VaR(data[i:(255*year+i-1)],p=p,method ="gaussian",portfolio_method = 

"single",mu = mean(data[i:(255*year+i-1)]),sigma=var(data[i:(255*year+i-1)])) 

  } 
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  return(result) 

} 

#Normal return VaR 

 

VaR_norm_95_4 <- var_norm(ld.DJI$daily.returns,p=0.95,year=4) 

VaR_norm_975_4 <- var_norm(ld.DJI$daily.returns,p=0.975,year=4) 

VaR_norm_99_4 <- var_norm(ld.DJI$daily.returns,p=0.99,year=4) 

 

VaR_norm_4 <- as.data.frame(cbind(VaR_norm_95_4,VaR_norm_975_4,VaR_norm_99_4)) 

VaR_norm_4 <- 

cbind(ld.DJI$Date[(255*4+1):length(ld.DJI$daily.returns)],VaR_norm_4,ld.DJI$daily.returns[(

255*4+1):length(ld.DJI$daily.returns)]) 

colnames(VaR_norm_4) <- c("date","var_95","var_975","var_99","realized") 

#write.csv(VaR_norm_4, file="DJI_VaR_norm_4.csv") 

 

#GSPC 

 

#Historical Return 4 yrs & 10 yrs rolling window  

 

VaR_his_95_4 <- var_his(ld.GSPC$daily.returns,p=0.95,year=4) 

VaR_his_975_4 <- var_his(ld.GSPC$daily.returns,p=0.975,year=4) 

VaR_his_99_4 <- var_his(ld.GSPC$daily.returns,p=0.99,year=4) 

 

VaR_his_4 <- as.data.frame(cbind(VaR_his_95_4,VaR_his_975_4,VaR_his_99_4)) 

VaR_his_4 <- 

cbind(ld.GSPC$Date[(255*4+1):length(ld.GSPC$daily.returns)],VaR_his_4,ld.GSPC$daily.retur

ns[(255*4+1):length(ld.GSPC$daily.returns)]) 

colnames(VaR_his_4) <- c("date","var_95","var_975","var_99","realized") 

#write.csv(VaR_his_4, file="GSPC_VaR_his_4.csv") 
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VaR_his_95_10 <- var_his(ld.GSPC$daily.returns,p=0.95,year=10) 

VaR_his_975_10 <- var_his(ld.GSPC$daily.returns,p=0.975,year=10) 

VaR_his_99_10 <- var_his(ld.GSPC$daily.returns,p=0.99,year=10) 

 

VaR_his_10 <- as.data.frame(cbind(VaR_his_95_10,VaR_his_975_10,VaR_his_99_10)) 

VaR_his_10 <- 

cbind(ld.GSPC$Date[(255*10+1):length(ld.GSPC$daily.returns)],VaR_his_10,ld.GSPC$daily.re

turns[(255*10+1):length(ld.GSPC$daily.returns)]) 

colnames(VaR_his_10) <- c("date","var_95","var_975","var_99","realized") 

#write.csv(VaR_his_10, file="GSPC_VaR_his_10.csv") 

 

#Normal return VaR 

 

VaR_norm_95_4 <- var_norm(ld.GSPC$daily.returns,p=0.95,year=4) 

VaR_norm_975_4 <- var_norm(ld.GSPC$daily.returns,p=0.975,year=4) 

VaR_norm_99_4 <- var_norm(ld.GSPC$daily.returns,p=0.99,year=4) 

 

VaR_norm_4 <- as.data.frame(cbind(VaR_norm_95_4,VaR_norm_975_4,VaR_norm_99_4)) 

VaR_norm_4 <- 

cbind(ld.GSPC$Date[(255*4+1):length(ld.GSPC$daily.returns)],VaR_norm_4,ld.GSPC$daily.re

turns[(255*4+1):length(ld.GSPC$daily.returns)]) 

colnames(VaR_norm_4) <- c("date","var_95","var_975","var_99","realized") 

#write.csv(VaR_norm_4, file="GSPC_VaR_norm_4.csv") 

04.3 HIT&INDEPENDENCE  

########################################### 

##### LOAD WORKING DIRECTORY FOR INPUT#### 

########################################### 
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setwd("C:/Users/Administrator/Dropbox/TFM/TFM/04.VaR - Non-parametric/04.1 Non 

parametric VaR output") 

 

DJI_VaR_his_4 <- read.csv(file="DJI_VaR_his_4.csv") 

DJI_VaR_his_4$X <- NULL 

 

DJI_VaR_his_10 <- read.csv(file="DJI_VaR_his_10.csv") 

DJI_VaR_his_10$X <- NULL 

 

DJI_VaR_norm_4 <- read.csv(file="DJI_VaR_norm_4.csv") 

DJI_VaR_norm_4$X <- NULL 

 

GSPC_VaR_his_4 <- read.csv(file="GSPC_VaR_his_4.csv") 

GSPC_VaR_his_4$X <- NULL 

 

GSPC_VaR_his_10 <- read.csv(file="GSPC_VaR_his_10.csv") 

GSPC_VaR_his_10$X <- NULL 

 

GSPC_VaR_norm_4 <- read.csv(file="GSPC_VaR_norm_4.csv") 

GSPC_VaR_norm_4$X <- NULL 

 

########################################### 

##### SET WORKING DIRECTORY FOR OUTPUT##### 

########################################### 

 

setwd("C:/Users/Administrator/Dropbox/TFM/TFM/04.VaR - Non-parametric/04.3 Hit 

Independence output") 
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########################################### 

##### CALCULATIN OF Q ADJUSTMENT ########## 

########################################### 

 

library("rugarch") 

 

######################################################### 

##### LOAD UP FUNCTION THAT WILL BE USED LATER ########## 

######################################################### 

 

#### OPEN R SCRIPT AND RUN:  

### 04.4 CCLRp LOOP FUNCTION 

 

############## DJI ############### 

q_DJI_VaR_his_4_99 <- 

cclrp_rolling(255,DJI_VaR_his_4$var_99,DJI_VaR_his_4$realized,0.01) 

q_DJI_VaR_his_4_975 <- 

cclrp_rolling(255,DJI_VaR_his_4$var_975,DJI_VaR_his_4$realized,0.025) 

q_DJI_VaR_his_4_95 <- 

cclrp_rolling(255,DJI_VaR_his_4$var_95,DJI_VaR_his_4$realized,0.05) 

 

write.csv(q_DJI_VaR_his_4_99,file = "q_DJI_VaR_his_4_99") 

write.csv(q_DJI_VaR_his_4_975,file = "q_DJI_VaR_his_4_975") 

write.csv(q_DJI_VaR_his_4_95,file = "q_DJI_VaR_his_4_95") 

 

q_DJI_VaR_his_10_99 <- 

cclrp_rolling(255,DJI_VaR_his_10$var_99,DJI_VaR_his_10$realized,0.01) 
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q_DJI_VaR_his_10_975 <- 

cclrp_rolling(255,DJI_VaR_his_10$var_975,DJI_VaR_his_10$realized,0.025) 

q_DJI_VaR_his_10_95 <- 

cclrp_rolling(255,DJI_VaR_his_10$var_95,DJI_VaR_his_10$realized,0.05) 

 

write.csv(q_DJI_VaR_his_10_99,file = "q_DJI_VaR_his_10_99") 

write.csv(q_DJI_VaR_his_10_975,file = "q_DJI_VaR_his_10_975") 

write.csv(q_DJI_VaR_his_10_95,file = "q_DJI_VaR_his_10_95") 

 

q_DJI_VaR_norm_4_99 <- 

cclrp_rolling(255,DJI_VaR_norm_4$var_99,DJI_VaR_norm_4$realized,0.01) 

q_DJI_VaR_norm_4_975 <- 

cclrp_rolling(255,DJI_VaR_norm_4$var_975,DJI_VaR_norm_4$realized,0.025) 

q_DJI_VaR_norm_4_95 <- 

cclrp_rolling(255,DJI_VaR_norm_4$var_95,DJI_VaR_norm_4$realized,0.05) 

 

write.csv(q_DJI_VaR_norm_4_99,file = "q_DJI_VaR_norm_4_99") 

write.csv(q_DJI_VaR_norm_4_975,file = "q_DJI_VaR_norm_4_975") 

write.csv(q_DJI_VaR_norm_4_95,file = "q_DJI_VaR_norm_4_95") 

 

 

############## GSPC ############### 

q_GSPC_VaR_his_4_99 <- 

cclrp_rolling(255,GSPC_VaR_his_4$var_99,GSPC_VaR_his_4$realized,0.01) 

q_GSPC_VaR_his_4_975 <- 

cclrp_rolling(255,GSPC_VaR_his_4$var_975,GSPC_VaR_his_4$realized,0.025) 

q_GSPC_VaR_his_4_95 <- 

cclrp_rolling(255,GSPC_VaR_his_4$var_95,GSPC_VaR_his_4$realized,0.05) 

 

write.csv(q_GSPC_VaR_his_4_99,file = "q_GSPC_VaR_his_4_99") 

write.csv(q_GSPC_VaR_his_4_975,file = "q_GSPC_VaR_his_4_975") 
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write.csv(q_GSPC_VaR_his_4_95,file = "q_GSPC_VaR_his_4_95") 

 

q_GSPC_VaR_his_10_99 <- 

cclrp_rolling(255,GSPC_VaR_his_10$var_99,GSPC_VaR_his_10$realized,0.01) 

q_GSPC_VaR_his_10_975 <- 

cclrp_rolling(255,GSPC_VaR_his_10$var_975,GSPC_VaR_his_10$realized,0.025) 

q_GSPC_VaR_his_10_95 <- 

cclrp_rolling(255,GSPC_VaR_his_10$var_95,GSPC_VaR_his_10$realized,0.05) 

 

write.csv(q_GSPC_VaR_his_10_99,file = "q_GSPC_VaR_his_10_99") 

write.csv(q_GSPC_VaR_his_10_975,file = "q_GSPC_VaR_his_10_975") 

write.csv(q_GSPC_VaR_his_10_95,file = "q_GSPC_VaR_his_10_95") 

 

q_GSPC_VaR_norm_4_99 <- 

cclrp_rolling(255,GSPC_VaR_norm_4$var_99,GSPC_VaR_norm_4$realized,0.01) 

q_GSPC_VaR_norm_4_975 <- 

cclrp_rolling(255,GSPC_VaR_norm_4$var_975,GSPC_VaR_norm_4$realized,0.025) 

q_GSPC_VaR_norm_4_95 <- 

cclrp_rolling(255,GSPC_VaR_norm_4$var_95,GSPC_VaR_norm_4$realized,0.05) 

 

write.csv(q_GSPC_VaR_norm_4_99,file = "q_GSPC_VaR_norm_4_99") 

write.csv(q_GSPC_VaR_norm_4_975,file = "q_GSPC_VaR_norm_4_975") 

write.csv(q_GSPC_VaR_norm_4_95,file = "q_GSPC_VaR_norm_4_95") 

cclrp_loop <- function(data,data_r,alpha_v){ 

   

  for (q in -200:10000){r <- VaRTest(alpha = alpha_v, VaR=data-q/10000, actual = data_r, 

conf.level = 0.95)  

  if(is.na(r$cc.LRp)){ 

    return((q-1)/10000) 

    break 
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  }   

  if(r$cc.LRp > 0.05 ){ 

      return(q/10000) 

      break 

    } 

  } 

} 

 

 

#Only adjust Var with result of previous 1 yr, which means period = 255 

 

cclrp_rolling <- function(period,data,data_r,alpha_v){ 

  n <- 2200 #length(data) 

  result_q <-  vector(mode="numeric", length=n-period) 

  for(i in period+1:n){ 

    a <- i-period 

    b <- i-1 

    result_q[a] <- cclrp_loop(data[a:b],data_r[a:b],alpha_v) 

  } 

  return(result_q) 

} 

 

04.5 VaR Graphics  

########################################### 

######## LOAD VaR forecasts results ####### 

########################################### 
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setwd("C:/Users/Administrator/Dropbox/TFM/TFM/04.VaR - Non-parametric/04.1 Non 

parametric VaR output") 

 

DJI_VaR_his_4 <- read.csv(file="DJI_VaR_his_4.csv") 

DJI_VaR_his_4$X <- NULL 

 

DJI_VaR_his_10 <- read.csv(file="DJI_VaR_his_10.csv") 

DJI_VaR_his_10$X <- NULL 

 

DJI_VaR_norm_4 <- read.csv(file="DJI_VaR_norm_4.csv") 

DJI_VaR_norm_4$X <- NULL 

 

GSPC_VaR_his_4 <- read.csv(file="GSPC_VaR_his_4.csv") 

GSPC_VaR_his_4$X <- NULL 

 

GSPC_VaR_his_10 <- read.csv(file="GSPC_VaR_his_10.csv") 

GSPC_VaR_his_10$X <- NULL 

 

GSPC_VaR_norm_4 <- read.csv(file="GSPC_VaR_norm_4.csv") 

GSPC_VaR_norm_4$X <- NULL 

 

########################################### 

##### RESET WORKING DIRECTORY FOR OUTPUT### 

########################################### 

 

setwd("C:/Users/Administrator/Dropbox/TFM/TFM/04.VaR - Non-parametric/04.5 VaR 

Graphics output") 
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#DJI 

 

# Set new column values to appropriate colours 

DJI_VaR_his_4$Colour[DJI_VaR_his_4$realized>=DJI_VaR_his_4$var_95]="gray" 

DJI_VaR_his_4$Colour[DJI_VaR_his_4$realized<DJI_VaR_his_4$var_95]="red" 

 

plot(DJI_VaR_his_4$realized,  type = "p",pch=20,col = DJI_VaR_his_4$Colour,xlab = "DJI 

95%",ylab = "Var") 

lines(DJI_VaR_his_4$var_95,type = "l", col = "black",lwd=3) 

 

  # Set new column values to appropriate colours 

  DJI_VaR_his_4$Colour[DJI_VaR_his_4$realized>=DJI_VaR_his_4$var_975]="gray" 

  DJI_VaR_his_4$Colour[DJI_VaR_his_4$realized<DJI_VaR_his_4$var_975]="red" 

   

  plot(DJI_VaR_his_4$realized,  type = "p",pch=20,col = DJI_VaR_his_4$Colour,xlab = "DJI 

97.5%",ylab = "Var") 

  lines(DJI_VaR_his_4$var_975,type = "l", col = "black",lwd=3) 

 

# Set new column values to appropriate colours 

DJI_VaR_his_4$Colour[DJI_VaR_his_4$realized>=DJI_VaR_his_4$var_99]="gray" 

DJI_VaR_his_4$Colour[DJI_VaR_his_4$realized<DJI_VaR_his_4$var_99]="red" 

 

plot(DJI_VaR_his_4$realized,  type = "p",pch=20,col = DJI_VaR_his_4$Colour,xlab = "DJI 

99%",ylab = "Var") 

lines(DJI_VaR_his_4$var_99,type = "l", col = "black",lwd=3) 

 

# Set new column values to appropriate colours 

DJI_VaR_norm_4$Colour[DJI_VaR_norm_4$realized>=DJI_VaR_norm_4$var_95]="gray" 
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DJI_VaR_norm_4$Colour[DJI_VaR_norm_4$realized<DJI_VaR_norm_4$var_95]="red" 

 

plot(DJI_VaR_norm_4$realized,  type = "p",pch=20,col = DJI_VaR_norm_4$Colour,xlab = "DJI 

95%",ylab = "Var") 

lines(DJI_VaR_norm_4$var_95,type = "l", col = "black",lwd=3) 

 

# Set new column values to appropriate colours 

DJI_VaR_norm_4$Colour[DJI_VaR_norm_4$realized>=DJI_VaR_norm_4$var_975]="gray" 

DJI_VaR_norm_4$Colour[DJI_VaR_norm_4$realized<DJI_VaR_norm_4$var_975]="red" 

 

plot(DJI_VaR_norm_4$realized,  type = "p",pch=20,col = DJI_VaR_norm_4$Colour,xlab = "DJI 

97.5%",ylab = "Var") 

lines(DJI_VaR_norm_4$var_975,type = "l", col = "black",lwd=3) 

 

# Set new column values to appropriate colours 

DJI_VaR_norm_4$Colour[DJI_VaR_norm_4$realized>=DJI_VaR_norm_4$var_99]="gray" 

DJI_VaR_norm_4$Colour[DJI_VaR_norm_4$realized<DJI_VaR_norm_4$var_99]="red" 

 

plot(DJI_VaR_norm_4$realized,  type = "p",pch=20,col = DJI_VaR_norm_4$Colour,xlab = "DJI 

99%",ylab = "Var") 

lines(DJI_VaR_norm_4$var_99,type = "l", col = "black",lwd=3) 

 

#GSPC 

 

# Set new column values to appropriate colours 

GSPC_VaR_his_4$Colour[GSPC_VaR_his_4$realized>=GSPC_VaR_his_4$var_95]="gray" 

GSPC_VaR_his_4$Colour[GSPC_VaR_his_4$realized<GSPC_VaR_his_4$var_95]="red" 
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plot(GSPC_VaR_his_4$realized,  type = "p",pch=20,col = GSPC_VaR_his_4$Colour,xlab = 

"GSPC 95%",ylab = "Var") 

lines(GSPC_VaR_his_4$var_95,type = "l", col = "black",lwd=3) 

 

# Set new column values to appropriate colours 

GSPC_VaR_his_4$Colour[GSPC_VaR_his_4$realized>=GSPC_VaR_his_4$var_975]="gray" 

GSPC_VaR_his_4$Colour[GSPC_VaR_his_4$realized<GSPC_VaR_his_4$var_975]="red" 

 

plot(GSPC_VaR_his_4$realized,  type = "p",pch=20,col = GSPC_VaR_his_4$Colour,xlab = 

"GSPC 97.5%",ylab = "Var") 

lines(GSPC_VaR_his_4$var_975,type = "l", col = "black",lwd=3) 

 

# Set new column values to appropriate colours 

GSPC_VaR_his_4$Colour[GSPC_VaR_his_4$realized>=GSPC_VaR_his_4$var_99]="gray" 

GSPC_VaR_his_4$Colour[GSPC_VaR_his_4$realized<GSPC_VaR_his_4$var_99]="red" 

 

plot(GSPC_VaR_his_4$realized,  type = "p",pch=20,col = GSPC_VaR_his_4$Colour,xlab = 

"GSPC 99%",ylab = "Var") 

lines(GSPC_VaR_his_4$var_99,type = "l", col = "black",lwd=3) 

 

# Set new column values to appropriate colours 

GSPC_VaR_norm_4$Colour[GSPC_VaR_norm_4$realized>=GSPC_VaR_norm_4$var_95]="gr

ay" 

GSPC_VaR_norm_4$Colour[GSPC_VaR_norm_4$realized<GSPC_VaR_norm_4$var_95]="red

" 

 

plot(GSPC_VaR_norm_4$realized,  type = "p",pch=20,col = GSPC_VaR_norm_4$Colour,xlab = 

"GSPC 95%",ylab = "Var") 

lines(GSPC_VaR_norm_4$var_95,type = "l", col = "black",lwd=3) 
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# Set new column values to appropriate colours 

GSPC_VaR_norm_4$Colour[GSPC_VaR_norm_4$realized>=GSPC_VaR_norm_4$var_975]="g

ray" 

GSPC_VaR_norm_4$Colour[GSPC_VaR_norm_4$realized<GSPC_VaR_norm_4$var_975]="re

d" 

 

plot(GSPC_VaR_norm_4$realized,  type = "p",pch=20,col = GSPC_VaR_norm_4$Colour,xlab = 

"GSPC 97.5%",ylab = "Var") 

lines(GSPC_VaR_norm_4$var_975,type = "l", col = "black",lwd=3) 

 

# Set new column values to appropriate colours 

GSPC_VaR_norm_4$Colour[GSPC_VaR_norm_4$realized>=GSPC_VaR_norm_4$var_99]="gr

ay" 

GSPC_VaR_norm_4$Colour[GSPC_VaR_norm_4$realized<GSPC_VaR_norm_4$var_99]="red

" 

 

plot(GSPC_VaR_norm_4$realized,  type = "p",pch=20,col = GSPC_VaR_norm_4$Colour,xlab = 

"GSPC 99%",ylab = "Var") 

lines(GSPC_VaR_norm_4$var_99,type = "l", col = "black",lwd=3) 

 

 


