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Abstract
The most commonly used regression model in general insurance pricing is the com-
pound Poisson model with gamma claim sizes. There are two different parametriza-
tions for this model: the Poisson-gamma parametrization and Tweedie’s compound 
Poisson parametrization. Insurance industry typically prefers the Poisson-gamma 
parametrization. We review both parametrizations, provide new results that help to 
lower computational costs for Tweedie’s compound Poisson parameter estimation 
within generalized linear models, and we provide evidence supporting the industry 
preference for the Poisson-gamma parametrization.

Keywords Compound Poisson model · Gamma claim sizes · Tweedie’s distribution · 
Exponential dispersion family · Regression model · Generalized linear model · 
Neural network

1 Introduction

The most commonly used regression model in general insurance pricing is the com-
pound Poisson model with gamma claim sizes. State-of-the-art industry practice 
fits two separate generalized linear models (GLMs) to the two parts of this model, 
namely, a Poisson GLM to claim counts and a gamma GLM to claim amounts. Both 
the Poisson and the gamma distributions belong to the exponential dispersion family 
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(EDF). It has been noted by Tweedie [19] that the compound Poisson model with 
i.i.d. gamma claim sizes itself belongs to the EDF and, in fact, it closes the inter-
val of power variance functions between the Poisson model and the gamma model, 
see Section  3 in Jørgensen [5]. As a result of Tweedie’s and Jørgensen’s findings 
we obtain two different parametrizations of the compound Poisson model with 
i.i.d. gamma claim sizes. Selection between these two different parametrizations has 
been explored in the work of Jørgensen–de Souza [6] in the context of GLM insur-
ance pricing. Interestingly, to predict total claim amounts we need to fit two GLMs 
in the compound Poisson-gamma parametrization, whereas one GLM is sufficient to 
get the corresponding predictions within Tweedie’s EDF parametrization. This indi-
cates that in GLM applications these two parametrizations are not fully consistent. 
This point has been raised by Smyth–Jørgensen [17] who propose to use a double 
generalized linear model (DGLM) in Tweedie’s parametrization to simultaneously 
model mean and dispersion parameters within the EDF.

The main purpose of this article is to revisit the work of Smyth–Jørgensen [17], 
and to give properties under which the two GLMs for claim counts and claim sizes 
and the DGLM with Tweedie’s EDF parametrization lead to the same predic-
tive model; this involves a discussion about choices of covariate spaces and GLM 
link functions. Based on this, our first main contribution provides a new result for 
Tweedie’s DGLM that substantially reduces computational costs in calibrations of 
power variance parameters.

The second point that we explore is whether the insurance industry’s preference 
of using the Poisson-gamma parametrization can be justified. A priori it is not clear 
whether either of the two ways lead to better predictive models. This part of our 
work is based on GLMs and on their neural network extensions. We receive evi-
dence that supports the industry preference, in particular, under the choice of neural 
network regression models the Poisson-gamma parametrization is simpler in cali-
bration and leads to more robust results.

We close this introduction with a number of remarks. First, we mention the recent 
survey paper of Quijano Xacur–Garrido [12], which has similar goals to the present 
paper. This survey only considers the single GLM case of Tweedie’s parametriza-
tion, similar to Jørgensen–de Souza [6]. We emphasize that the full picture can only 
be obtained by comparing the Poisson-gamma parametrization to the DGLM case 
introduced in Smyth–Jørgensen [17]. Therefore, we revisit and extend this latter ref-
erence to receive a comprehensive comparison. Our view is supported by examples. 
These examples provide a proof of concept for situations with claims that are not too 
heavy tailed. However, these examples also highlight the weaknesses of this model 
on real insurance data, which often exhibits heavier tails than what is suitable under 
a gamma assumption. We remark that in our discussion we use the terminology of 
general insurance pricing, however, as commonly the case in general insurance, all 
our findings can be translated one-to-one to claims reserving problems.

Organization of the paper In Sect. 2 we introduce the compound Poisson model 
with i.i.d. gamma claim sizes and we derive its corresponding Tweedie parametriza-
tion. In Sect. 3 we embed both approaches into a GLM framework. We present the 
two GLMs needed for the Poisson-gamma parametrization, and we discuss a sin-
gle GLM and a DGLM parametrization for Tweedie’s approach. Our main results, 
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Theorems 3.6 and 3.8, give conditions under which the different GLM parametri-
zations lead to identical predictive models. These theorems provide a remarkable 
property that allows us to lower calibration costs in Tweedie’s DGLMs. In Sect. 4 
we give insights and intuition based on numerical examples both under GLMs and 
neural network regression models. In Sect. 5 we conclude, and the “Appendix” gives 
a short summary of GLMs and describes the data used.

2  Tweedie’s compound Poisson model

In Sect.  2.1 we introduce the compound Poisson model with i.i.d.  gamma claim 
sizes, and in Sect. 2.2 we revisit its Tweedie counterpart. For simplicity, in these two 
sections, we think of using these models for modeling one single insurance policy 
only. In Sect.  3, below, we consider multiple insurance policies also allowing for 
heterogeneity between policies.

2.1  Compound Poisson model with i.i.d. gamma claim sizes

Let N be the number of claims and let (Zj)j≥1 be the corresponding claim sizes. We 
assume that the number of claims, N, is Poisson distributed with mean �w , where 
𝜆 > 0 is the expected claim frequency relative to a given exposure w > 0 ; we write 
N ∼ Poi(�w) . We assume that the claim sizes Zj , j ≥ 1 , are i.i.d.  and independent 
of N having a gamma distribution with shape parameter 𝛾 > 0 and scale parameter 
c > 0 ; we write Z1 ∼ G(� , c) for this gamma distribution. The moment generating 
function of the gamma claim sizes is given by, see Section 3.2.1 in [20],

The compound Poisson model with i.i.d. gamma claim sizes (CPG) is then defined 
by S =

∑N

j=1
Zj ; we use notation S ∼ CPG(�w, � , c) . The moment generating func-

tion of S is given by

we refer to Proposition 2.11 in [20].

2.2  Tweedie’s compound Poisson model

Following [5, 6, 17, 19] we select a particular model within the EDF. A random 
variable Y belongs to the EDF if its density has the following form (w.r.t. a �-finite 
measure on ℝ)

�
[
exp{rZ1}

]
=
(

c

c − r

)�

, for r<c.

(2.1)�
[
exp {rS}

]
= exp

{
�w

((
c

c − r

)�

− 1
)}

, for r<c,

(2.2)Y ∼ f (y;�,w∕�) = exp

{
y� − �(�)

�∕w
+ a(y;w∕�)

}
,
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with w > 0 is a given exposure (weight, volume), 𝜙 > 0 is the dispersion parameter, 
� ∈ � is the canonical parameter in the effective domain � , � ∶ � → ℝ is the cumu-
lant function, a(⋅;⋅) is the normalization, not depending on the canonical parameter 
�.

For properties of the EDF we refer to “Appendix A”, below. Tweedie’s compound 
Poisson (CP) model is obtained by choosing for p ∈ (1, 2) the cumulant function

We use notation Y ∼ Tweedie(�,w,�, p) . The first two derivatives of the cumulant 
function provide the first two moments of Y, see also (A.1) in the “Appendix”,

Hyper-parameter p ∈ (1, 2) allows us to model the power variance functions 
V(�) = �p between the Poisson boundary case p = 1 and the gamma boundary case 
p = 2 , we refer to Sect. 3.1, below, for the boundary cases. � ↦ � = (��

p
)−1(�) gives 

the canonical link of Tweedie’s CP model.
We calculate the moment generating function of the exposure scaled Tweedie’s 

CP random variable wY, see also Corollary 7.21 in [20],

Note that this is a CPG model in a different parametrization; we call the model under 
this EDF parametrization Tweedie’s CP model. The following proposition follows 
by comparing the corresponding moment generating functions.

Proposition 2.1 Choose S ∼ CPG(�w, � , c) and Y ∼ Tweedie(�,w,�, p) . We have 
identity in distribution S∕w

(d)
=Y  under parameter identification

(2.3)

�(�) = �p(�) =
1

2 − p
((1 − p)�)

2−p

1−p , on effective domain � ∈ � = ℝ− = (−∞, 0).

(2.4)� =�[Y] = ��
p
(�) = ((1 − p)�)

1

1−p ,

(2.5)Var(Y) =
�

w
���
p
(�) =

�

w
((1 − p)�)

p

1−p =
�

w
�p.

�
[
exp{rwY}

]
= exp

{
w

𝜙

(
𝜅p(𝜃 + r𝜙) − 𝜅p(𝜃)

)}

= exp

{
w

𝜙
𝜅p(𝜃)

((
−𝜃∕𝜙

−𝜃∕𝜙 − r

) 2−p

p−1

− 1

)}
, for r < −𝜃∕𝜙.

(2.6)� =
2 − p

p − 1
⇔p =

� + 2

� + 1
∈ (1, 2),

(2.7)c =−�∕�,

(2.8)� =
1

�
�p(�).
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Formula (2.8) can be rewritten in different ways. We have, using the 
canonical link of Tweedie’s CP model, � = (��

p
)−1(�) = �1−p∕(1 − p) and 

�p(�) = �p((�
�
p
)−1(�)) = �2−p∕(2 − p) . This implies, using (2.7) in the second step 

and (2.6) in the last step,

The latter says that, of course, the expected claim frequency � is obtained by divid-
ing the expected total claim amount �[Y] = � by the average claim size �[Z1] = �∕c.

Thus, under parameter identification scheme (2.6)–(2.8) the two models are 
identical:

This illustrates that there is a one-to-one correspondence between the CPG para-
metrization and Tweedie’s CP parametrization, i.e. the two models are identical and 
only differ in interpretation of parameters. The next section will demonstrate that 
these subtle differences can be crucial for GLM regression modeling, and resulting 
models can be rather different as functions of explanatory covariates, see Sect. 3.3 
below.

3  Generalized linear models and parameter estimation

In this section we study multiple insurance policies i = 1,… , n having claim distri-
butions CPG(�iwi, � , ci) and Tweedie(�i,wi,�i, p) , respectively. We allow for hetero-
geneity between the policies in all parameters that have a lower index i. We describe 
modeling and parameter estimation within GLMs: we consider two GLMs to model 
�i (Poisson) and −ci∕� (gamma) in the former case, and we consider a DGLM to 
model �i and �i in the latter case. There is a slight difference between “two GLMs” 
and “double GLM”, the former considers two independent GLMs, the latter does a 
simultaneous consideration of two GLMs. The volumes wi are assumed to be known 
and do not need any modeling. The shape parameter 𝛾 > 0 and the power variance 
parameter p = (� + 2)∕(� + 1) , see (2.6), are assumed to be the same for all policies 
i, this is a standard assumption in state-of-the-art use of these GLMs. An overview 
of GLMs and their parameter estimation within the EDF is given in “Appendix A”.

3.1  Compound Poisson model with i.i.d. gamma claim sizes

We begin with the CPG model. Since the log-likelihood function of the CPG 
model decouples into two separate parts for claim counts and claim sizes, maxi-
mum likelihood estimation (MLE) of claim counts and claim size models can be 

(2.9)� =
1

�
�p(�) =

c

−�
�p(�) = c

p − 1

�1−p

�2−p

2 − p
=

c

�
�.

Tweedie(�,w,�, p)
(d)
=CPG

(
w

�
�p(�),

2 − p

p − 1
,
−�w

�

)
, or

CPG(�w, � , c)
(d)
=Tweedie

(
(��

p
)−1

(
�w

�

c

)
,w,

−w

c
(��

p
)−1

(
�w

�

c

)
,
� + 2

� + 1

)
.
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done independently from each other. We start from n independent random variables 
Si ∼ CPG(�iwi, � , ci) with

The joint log-likelihood function of this model, given observations (Ni)i and (Zi,j)i,j 
and weights (wi)i , is given by

where the term on the second line is zero for Ni = 0 . Remark that in this log-likeli-
hood function (for parameter estimation) we treat (Ni)i and (Zi,j)i,j as known observa-
tions; for notational convenience we do not use small fonts for observations. From 
(3.1) we now see that we can estimate the Poisson parameters �i and the gamma 
parameters � and ci independently from each other; the former uses observations (Ni) 
and the latter observations (Ni)i and (Zi,j)i,j.

Furthermore, we assume that each insurance policy i = 1,… , n is established 
with covariate information xi = (xi,0,… , xi,d)

� ∈ X ⊂ {1} ×ℝ
d , having initial com-

ponent xi,0 = 1 for modeling the intercept component.
GLM for claim counts: Assume that the expected frequencies �i = �(xi) of poli-

cies i = 1,… , n can be modeled by a log-linear regression function

with regression parameter � = (�0,… , �d)
� ∈ ℝ

d+1 . Assuming that the design 
matrix � = (x1,… , xn)

� ∈ ℝ
n×(d+1) has full rank d + 1 we find the unique MLE �̂ for 

� by the (unique) solution of

Remark that the Poisson distribution has an EDF representation with cumulant func-
tion �(⋅) = �1(⋅) = exp{⋅} . The lower index p = 1 in the cumulant function �1(⋅) 
indicates that we have variance function V(�) = � in the Poisson case, see also (2.5). 
The choice (3.2) corresponds to the canonical link (��

1
)−1(⋅) = log(⋅) in the Poisson 

GLM. The choice of the canonical link implies that we receive an unbiased portfolio 
estimate, see [21]. The score Eq. (3.3) is solved numerically, for details see (A.3) in 
“Appendix A”.

Si =

Ni∑
j=1

Zi,j, for insurance policies i = 1,… , n.

(3.1)

�((�i)i=1,…,n, � , (ci)i=1,…,n)

=

n∑
i=1

(
− �iwi + Ni log(�iwi) − log(Ni!)

+

Ni∑
j=1

� log(ci) − logΓ(�) + (� − 1) log(Zi,j) − ciZi,j

)
,

(3.2)� ∶ X → ℝ+, x ↦ �(x) = exp ⟨�, x⟩ = exp

�
�0 +

d�
k=1

�kxk

�
,

(3.3)�� diag(w1,… ,wn)

((
N1

w1

,… ,
Nn

wn

)�

− exp{��}

)
= 0.
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GLM for gamma claim sizes: Consider only insurance policies i which have 
claims, i.e.  with Ni > 0 . All subsequent considerations in this paragraph are con-
ditional on Ni . The average claim amount on policy i has a conditional gamma 
distribution

with shape parameter �Ni and scale parameter ciNi (note that � is not policy i depend-
ent). This gamma distributed random variable has conditional mean and variance 
given by

This model belongs to the EDF (2.2) with cumulant function �2(�) = − log(−�) for 
� ∈ � = ℝ− , dispersion parameter � = 1∕� and exposure wi = Ni . The conditional 
mean and variance are

This is the boundary case p = 2 in Tweedie’s CP model with power variance func-
tion V(�) = �2 , see (2.5).

We set up a second GLM for gamma claim size modeling. This second GLM does 
not necessarily need to rely on the same covariate space X  as the Poisson GLM (3.2) 
for claim counts modeling. To emphasize this point, we introduce a new covariate 
space containing covariate information zi = (zi,0,… , zi,q)

� ∈ Z ⊂ {1} ×ℝ
q having 

initial component zi,0 = 1 modeling the intercept. We interpret the choices X  and Z 
as follows: both covariates xi ∈ X  and zi ∈ Z should belong to the same insurance 
policy i, however, inclusion of individual covariate components and pre-processing 
of these components may differ in the two different regression models. This is a 
result of aiming at optimizing the predictive performance of both regression models.

We make the following regression assumption: choose a suitable link function 
g2(⋅) to receive the linear predictor, see also “Appendix A”,

for regression parameter � ∈ ℝ
q+1 . Formula (3.5) explains the relationship between 

mean 𝜁 = �[Z̄|N] = 𝜅�
2
(𝜃) , canonical parameter � and linear predictor � = �(z) . Usu-

ally, one does not select the canonical link in the gamma GLM because the nega-
tivity constraint on the canonical parameter � ∈ � = ℝ− may be too restrictive 
in choosing a linear functional regression form; this is in contrast to the Poisson 
GLM (3.2). Therefore, the choice of the link function g2(⋅) has to be done carefully, 
because we require 1∕𝜃i = −g−1

2
(𝜂i) = −g−1

2
⟨�, zi⟩ < 0 for all policies i = 1,… , n , 

otherwise the canonical parameter �i is not in the effective domain � . Below, we 
will choose the log-link for g2 , which is a common choice for gamma GLMs.

(3.4)Z̄i =
1

Ni

Ni∑
j=1

Zi,j
||||{Ni}

∼ G(𝛾Ni, ciNi),

𝜁i = �[Z̄i|Ni] =
𝛾

ci
and Var(Z̄i|Ni) =

𝛾

c2
i
Ni

=
1

𝛾Ni

(
𝛾

ci

)2

=
1

𝛾Ni

𝜁2
i
.

𝜁i = �[Z̄i|Ni] = 𝜅�
2
(𝜃i) = −

1

𝜃i
and Var(Z̄i|Ni) =

1

𝛾Ni

𝜅��
2
(𝜃i) =

1

𝛾Ni

(
−
1

𝜃i

)2

.

(3.5)g2(𝜁i) = g2(�[Z̄i�Ni]) = g2(𝜅
�
2
(𝜃i)) = g2(−1∕𝜃i) = 𝜂i = ⟨�, zi⟩,
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These choices imply for the log-likelihood function, only considering policies 
i = 1,… ,m with Ni > 0,

The MLE �̂ of � is found by solving the score equation, see “Appendix A”,

with design matrix ℨ = (z1,… , zm)
� ∈ ℝ

m×(q+1) , diagonal working weight matrix 
(using V(�i) = �−2

i
)

and with working residual vector R = (
𝜕g2(𝜁i)

𝜕𝜁i
(Z̄i − 𝜁i))i=1,…,m.

Remarks 3.1 

• Shape parameter � may be treated as a hyper-parameter, and the explicit choice 
of � does not influence parameter estimation because it cancels in the score 
Eq. (3.7).

• MLE (3.6)–(3.7) is expressed in sufficient statistics Z̄i , and we receive the same 
regression parameter estimate �̂ if we perform MLE directly on the individual 
claim sizes Zi,j . This is an important property, namely, the gamma GLM can be 
fit solely on the number of claims Ni and the total claim amount Z̄i on each pol-
icy i. Moreover, this estimated model still allows us to simulate individual claim 
sizes Zi,j . Thus, GLM regression parameter estimation does not differ whether 
we consider total claim amounts Z̄i or individual claim sizes Zi,j . On the other 
hand, the process of model and variable selection might give different results in 
the two estimation cases ( ̄Zi vs. Zi,j ) because the log-likelihood functions and the 
estimates for � differ, this is, e.g., important for model selection using likelihood 
ratio tests or Akaike’s information criterion, see Remarks 3.10, below.

• If we model claim counts and claim sizes separately, we use maximal available 
information Ni and Zi,j . Moreover, we can design covariate spaces X  and Z in an 
optimal way, and independently from each other.

• If (3.5) is not based on the canonical link of the gamma model, the balance 
property will not be fulfilled, see [22]. This should be corrected by shifting 
the intercept parameter �0 correspondingly. Often one chooses the log-link for 
g2(⋅) , under the log-link choice we can also reformulate the regression problem 
by replacing the average claim amount response (3.4) by the (conditional) total 
claim amount Si|{Ni}

 and treating log(Ni) as a known offset in the linear predictor.
• Shape parameter 𝛾 < 1 leads to an over-dispersed model with strictly decreasing 

density, and for 𝛾 > 1 the density is uni-modal. Above � is treated as a hyper-
parameter, and below we discuss MLE of �.

(3.6)�(�) =

m∑
i=1

𝛾Ni

(
Z̄i𝜃i − 𝜅2

(
𝜃i
))

+ a(Z̄i;𝛾Ni).

(3.7)∇��(�) = 0 ⇔ ℨ�W2R = 0,

(3.8)W2 = � diag

((
�g2(�i)

��i

)−2

Ni�
−2
i

)

i=1,…,m

,
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• If shape parameter �i needs explicit modeling as a function of i, then (3.7)–(3.8) 
will no longer have such a simple structure, and MLE of � will depend on the 
explicit choices of �i . In this case, one can either use a gamma DGLM or one can 
rely on the 2-dimensional exponential family. The latter model is less tractable 
numerically. It considers cumulant function �(�1, �2) = logΓ(�2) − �2 log(−�1) 
for scale parameter c = −𝜃1 > 0 and shape parameter 𝛾 = 𝜃2 > 0 . This gives 
inverse link function, see [21], 

 the first component being the mean of the gamma distributed random variable Z, 
and the second component being the mean of log(Z) . We do not further follow up 
this approach because we would lose the connection to Tweedie’s CP approach 
with a policy independent power variance parameter, see next section.

There remains estimation of shape parameter � for given MLE �̂ . One could either 
use Pearson’s dispersion estimate for 1∕� or directly calculate the MLE of � . In view of 
(3.6), the MLE is obtained from score equation �

��
�(�̂, �) = 0 , which yields

where we set �̂i = − exp{−⟨�̂, zi⟩} . Either we solve this score equation numerically 
using the Newton-Raphson algorithm, or we plot the one-dimensional log-likelihood 
function � ↦ �(�̂, �) and determine the MLE �̂  from this plot, see Fig. 1, below, for 
an example.

We conclude by calculating Fisher’s information matrix for (�, �) in our gamma 
GLM. We have, see “Appendix A”,

For the second derivative of the � term we have

where the second order derivative � �(x) =
d2

dx2
logΓ(x) of the log-gamma function 

is known as the trigamma function, see [10, Sec. 5.15]. The trigamma function is 
directly available in the statistical software R [13]. For the off-diagonal terms we 
have

This gives us the following Fisher’s information matrix for the gamma claim size 
modeling

∇(�1,�2)
�(�1, �2) =

(
�2
−�1

,
Γ�(�2)

Γ(�2)
− log(−�1)

)�

,

(3.9)
m∑
i=1

Ni

(
Z̄i
�𝜃i − 𝜅2(�𝜃i)

)
+ Ni log(𝛾Ni) + Ni + Ni log(Z̄i) − Ni

Γ�(𝛾Ni)

Γ(𝛾Ni)
= 0,

−�
[
∇2

�
�(�, �)

|||N1,… ,Nm

]
= ℨ�W2ℨ.

−�

[
�2

��2
�(�, �)

||||N1,… ,Nm

]
= −

m∑
i=1

Ni

�
− N2

i
� �(x)

||||x=�Ni

,

−�

[
∇�

𝜕

𝜕𝛾
�(�, 𝛾)

||||N1,… ,Nm

]
= −

m∑
i=1

Ni�
[
Z̄i − 𝜅�

2
(𝜃i)

||N1,… ,Nm

]
∇�𝜃i = 0.
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3.2  Tweedie’s compound Poisson generalized linear model

3.2.1  Homogeneous dispersion case

From Sect. 2.2 we know that Tweedie’s CP model belongs to the EDF, thus, GLM is 
straightforward. In this subsection we start with the homogeneous dispersion param-
eter 𝜙 > 0 case; this case will not be supported in Remarks 3.2, below. We assume 
having n independent random variables Yi ∼ Tweedie(�i,wi,�, p) , and we choose 
hyper-parameter p = (� + 2)∕(� + 1) ∈ (1, 2) to make Tweedie’s CP model consist-
ent with the CPG case, see Proposition 2.1. Choosing a suitable link function gp(⋅) 
we make the following regression assumption for the linear predictor

where x∗
i
∈ X

∗ ⊂ {1} ×ℝ
d∗ are the covariates of policy i and �∗ is the regression 

parameter. We change the covariate notation compared to Sect. 3.1 because covari-
ate pre-processing might be done differently for Tweedie’s CP model compared to 
the CPG case (because we consider different responses). In complete analogy with 
the above, MLE requires solving the score equations

with design matrix � = (x∗
1
,… , x∗

n
)� , diagonal working weight matrix (using 

V(�i) = �
p

i
)

and working residual vector R = (
�gp(�i)

��i

(Yi − �i))i=1,…,n.

Remarks 3.2 There are a couple of crucial differences between Tweedie’s CP 
approach with homogeneous dispersion � and the CPG approach of the previous 
section: 

1. The CPG approach of the previous section uses all available information of claim 
counts Ni and claim sizes Z̄i , whereas Tweedie’s CP approach with homogeneous 
dispersion parameter only uses total claim cost information Yi.

2. The former approach allows us to consider different covariate spaces X  and Z for 
claim counts and claim size modeling, whereas the latter approach only relies on 
one version of the covariate space X∗.

3. The mean estimates �̂i�̂i in the CPG case do not rely on the particular choice of 
the shape parameter � , whereas in the homogeneous dispersion Tweedie’s CP 

I(�, �) =

�
ℨ�W2ℨ 0

0
� −

∑m

i=1
Ni∕� − N2

i
� �(x)�x=�Ni

�
.

(3.10)gp(�i) = gp(�[Yi]) = gp(�
�
p
(�i)) = �i =

⟨
�∗, x∗

i

⟩
,

(3.11)∇�∗�(�∗) = 0 ⇔ ��WpR = 0,

(3.12)Wp =
1

�
diag

((
�gp(�i)

��i

)−2

wi�
−p

i

)

i=1,…,n

,
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approach the mean estimates �̂i rely on the specific choice of power variance 
parameter p = (� + 2)∕(� + 1) through the working weight matrix Wp , see (3.12).

4. In general, the dispersions resulting from CPG(�iwi, � , ci) are not constant: 

 The dispersion can only be constant if �i = −�i∕ci does not depend on i. Typi-
cally, this is not the case, see also Conclusions and Remarks 3.9, below. There-
fore, we need to extend the homogeneous dispersion case of Tweedie’s CP 
model to a DGLM Tweedie’s CP model, otherwise it cannot be compared to the 
CPG case, which is more flexible in dispersion modeling. For more analysis of 
the homogeneous dispersion case see [12].

3.2.2  Heterogeneous dispersion case

As stated in Remarks 3.2, the homogeneous dispersion Tweedie’s CP approach does 
not use full information of claim counts and claim costs and it does not allow for 
flexible dispersion modeling �i . In Section 2 of [17], the authors raise the point that 
in applications of Tweedie’s CP model to insurance claim data it is important to use 
full information so that also the dispersion parameter �i is modeled flexibly. As a 
consequence, the dispersion parameter cannot be factored out as in (3.12), and it 
does not cancel in optimization (3.11). Therefore, [17] propose to use the framework 
of DGLMs which was introduced and developed by [8, 15, 18]. DGLMs allow for 
simultaneous modeling of both mean and dispersion parameters by using a second 
GLM for the dispersion parameter �i . The two GLMs are jointly calibrated using 
claim count and claim cost information. The joint density of a single case (N, Y) has 
been derived in formula (11) of [6]:

with p = (� + 2)∕(� + 1) , �p(⋅) given in (2.3), and

If we re-parametrize this joint distribution using mean parameter 
� = ��

p
(�) = ((1 − p)�)1∕(1−p) for total claim costs we arrive at the log-likelihood 

function

Var(Si∕wi) =w
−2
i
�[Ni]�[Z

2
i,1
] = w−1

i
�i

(
�

c2
i

+
�2

c2
i

)
= w−1

i
�i�i

1 + �

ci

=w−1
i
�
p

i

�
1−p

i

ci(p − 1)
= w−1

i

(
−�i
ci

)
�
p

i
=

�i

wi

�
p

i
.

(3.13)(N, Y) ∼ f (n, y;�,w∕�) = exp

{
y� − �p(�)

�∕w
+ a(n, y;w∕�)

}
,

exp {a(n, y;w∕�)} =

(
(w∕�)�+1y�

(p − 1)� (2 − p)

)n
1

n!Γ(n�)y
.
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In complete analogy with the above we determine the score equations w.r.t. � and �

with variance function V(�) = �p.

Proposition 3.3 Fisher’s information contribution in the heterogeneous dispersion 
Tweedie’s CP model w.r.t. (�,�) is given by

Moreover, we have

Remark that in the above proposition we talk about Fisher’s information con-
tribution because the statement considers only one single random variable (Y, N). 
This is in contrast to (3.27) where we calculate Fisher’s information matrix over the 
entire portfolio.

Joint MLE of � and � requires solving score Eqs. (3.14)-(3.15). This can be done 
by any suitable root search or gradient descent algorithm. In [17], this root search 
problem is approached using a slightly different representation, namely, by introduc-
ing a dispersion response variable D. This allows for a reformulation of the model in 
a DGLM form. We revisit [17] after proving Proposition 3.3.

Proof of Proposition 3.3 We start by calculating the means of the terms of the score 
in (3.15). We have

and for the second term we receive

�(𝜇,𝜙) =

⎧
⎪⎨⎪⎩

w

𝜙

�
Y

𝜇1−p

1−p
−

𝜇2−p

2−p

�
+ N log

�
(w∕𝜙)𝛾+1Y𝛾

(p−1)𝛾 (2−p)

�
− log (N!Γ(N𝛾)Y) for N > 0,

−
w

𝜙

𝜇2−p

2−p
for N = 0.

(3.14)
�

��
�(�,�) = 0 ⇔

w

�

1

V(�)
(Y − �) = 0,

(3.15)
�

��
�(�,�) = 0 ⇔ −

w

�2

(
Y
�1−p

1 − p
−

�2−p

2 − p

)
−

1

�

N

p − 1
= 0,

(3.16)I(�,�) = −�
[
∇2

(�,�)
�(�,�)

]
=

(
w

�

1

V(�)
0

0
w�2−p

(p−1)(2−p)

1

�3

)
.

�

[
�2

���p
�(�,�)

]
= 0.

�

[
Y
�1−p

1 − p
−

�2−p

2 − p

]
=

�2−p

1 − p
−

�2−p

2 − p
=

1

1 − p

�2−p

2 − p
=

1

1 − p
�p(�),
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From these two formulas it follows that, indeed, the score in (3.15) is a residual with 
mean zero. The cross-covariance terms are easily obtained by noting that also the 
score in (3.14) is a zero mean residual. This implies

There remain the diagonal terms. For the first one we have, using integration by 
parts,

For the second diagonal term we have, this provides the variance of the zero mean 
score in (3.14),

This finishes the proof of Proposition 3.3.   ◻

Thus, for MLE of � and � we need to consider the scores in (3.14)–(3.15), the lat-
ter one defining (unscaled) residuals w.r.t. the dispersion given by

As mentioned above, solving score Eqs. (3.14)–(3.15) produce the MLEs for � and 
� ; basically, this finishes the MLE problem. In the remainder of this section, follow-
ing [17], we rewrite this MLE problem. This different representation introduces a 
new (dispersion) response variable D, such that the root search problem can directly 
be related to Fisher’s scoring method in a DGLM form. Choose square variance 
function Vd(�) = �2 and dispersion-prior weights

This allows us to define so-called dispersion responses

�

[
1

�

N

p − 1

]
=

1

�2

��w

p − 1
=

1

�2

−�

c

�w

p − 1
=

1

�2

�1−p

2 − p

�

c

�w

p − 1

=
w

�2

1

p − 1

�2−p

2 − p
= −

w

�2

1

1 − p
�p(�).

(3.17)−�

[
�2

����
�(�,�)

]
= −�

[
�2

���p
�(�,�)

]
= 0.

−�

[
�2

��2
�(�,�)

]
= �

[(
�

��
�(�,�)

)2
]
=

w2

�2

1

V(�)2
Var(Y) =

w

�

1

V(�)
.

−�

[
�2

��2
�(�,�)

]
= −�

[
2
w

�3

(
Y
�1−p

1 − p
−

�2−p

2 − p

)
+

N(� + 1)

�2

]
=

w

�3

�2−p

(p − 1)(2 − p)
.

Ed =
�

��
�(�,�) =

1

�2

[
−w

(
Y
�1−p

1 − p
−

�2−p

2 − p

)
− �

N

p − 1

]
.

(3.18)v =
2w

𝜙

𝜇2−p

(p − 1)(2 − p)
> 0.

(3.19)D =
2

v

(
−w

(
Y
�1−p

1 − p
−

�2−p

2 − p

)
− �

N

p − 1

)
+ � =

2

v
Vd(�)Ed + �,
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having �[D] = � , Var(D) = 2

v
Vd(�) and scores w.r.t. �

Fisher’s information contribution (3.16) then reads as

As emphasized by [16], orthogonality of � and (�, p) , see (3.17), typically leads to 
fast convergence in estimation algorithms.

Remarks 3.4 

• We start from the joint distribution of (N,  Y), given in (3.13), for estimat-
ing (�,�) . This estimation problem is modified by considering a new response 
vector (Y, D), instead. The new dispersion response D, defined in (3.19), is not 
gamma distributed, but in view of score (3.20) we bring it into a gamma EDF 
structure with weight v > 0 , dispersion parameter 2 and square variance function 
Vd(�) = �2 , see also (2.5). In [17] it is mentioned that these definitions of v and 
D are somewhat artificial, but they bring this estimation problem into a DGLM 
form; note that this requires to include one dispersion term � into the weight 
v and the response D, this means that we have an approximate score equation 
equivalence with a gamma MLE problem. In view of Proposition 3.3, we could 
also define dispersion response D differently by choosing an inverse Gauss-
ian power variance function, i.e. Vd(�) = �3 , and defining the dispersion-prior 
weight correspondingly. This provides the same numerical solution for MLE, 
using an approximate score equation equivalence with an inverse Gaussian MLE 
problem. However, in this latter version the weights do not provide the right scal-
ing for a distribution within the EDF.

• Alternatively, we could try to estimate dispersion � using Tweedie’s deviance 
residuals 

 Following [17], the squared residuals E2 are approximately ��2
1
 distributed for � 

sufficiently small, thus, they can be approximated by a gamma distribution with 
mean � and variance 2�2 . Section 3.1 of [17] discusses this estimation approach. 
We do not further follow these lines because this approach does not use any 
claim count information and, therefore, does not benefit from full information 
(N, Y) as the CPG case.

• There is a third alternative of including a dispersion estimation, and this third 
one is the one implemented in the R package dglm. This requires that the dis-
persion parameter is made policy dependent and then a DGLM is explored on 

(3.20)
�

��
�(�,�) =

v

2

1

Vd(�)
(D − �).

I(�,�) = −�
[
∇2

(�,�)
�(�,�)

]
=

(
w

�

1

V(�)
0

0
v

2

1

Vd(�)

)
.

E = sgn(Y − �)

√
2w

(
Y
Y1−p − �1−p

1 − p
−

Y2−p − �2−p

2 − p

)
.



199

1 3

Making Tweedie’s compound Poisson model more accessible  

(Y , E) by alternating the corresponding score updates. Also this approach does 
not benefit from full information (N, Y) (in contrast to the CPG model), and it is 
therefore not further explored in this manuscript.

3.2.3  Double generalized linear model in the heterogeneous Tweedie case

We use the heterogeneous dispersion Tweedie’s CP approach and bring it into a 
DGLM form as described in the previous section. Choosing a suitable link function 
gp(⋅) we make the following regression assumption for the linear predictor of the 
mean

upper indices ∗ distinguishing the parametrization in Tweedie’s CP GLM case from 
the individual models in Sect. 3.1. For the modeling of the dispersion parameter we 
choose a second link function gd(⋅) such that we have the linear predictor

where the covariates z∗
i
∈ Z

∗ ⊂ {1} ×ℝ
q∗ are potentially differently pre-processed 

than the ones x∗
i
∈ X

∗ ⊂ {1} ×ℝ
d∗ , but still belong to the same policy i. MLE of 

(�∗,�∗) requires solving the score equations, see (3.14) and (3.20),

with design matrices � = (x∗
1
,… , x∗

n
)� and ℨ = (z∗

1
,… , z∗

n
)� , working weight 

matrices

and working residual vectors R = (
�gp(�i)

��i

(Yi − �i))i=1,…,n and 
Rd = (

�gd(�i)

��i

(Di − �i))i=1,…,n . For the definition of the dispersion-prior weights 
vi = vi(�i) and the dispersion responses Di we refer to (3.18)–(3.19). Using Fisher’s 
scoring method for estimating �∗ and �∗ , see “Appendix A”, we explore the scoring 
updates

(3.21)gp(�i) = gp(�[Yi]) = gp(�
�
p
(�i)) = �i =

⟨
�∗, x∗

i

⟩
,

(3.22)gd(�i) =
⟨
�∗, z∗

i

⟩
,

(3.23)∇�∗�(�∗,�∗) = 0 ⇔

n∑
i=1

wi

�i

1

V(�i)

(
Yi − �i

)
∇�∗�i = ��WpR = 0,

(3.24)∇�∗�(�
∗,�∗) = 0 ⇔

n∑
i=1

vi

2

1

Vd(�i)

(
Di − �i

)
∇�∗�i = ℨ�WdRd = 0,

Wp =diag

((
�gp(�i)

��i

)−2
wi

�i

1

V(�i)

)

i=1,…,n

,

Wd =diag

((
�gd(�i)

��i

)−2
vi

2

1

Vd(�i)

)

i=1,…,n

,
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where all terms on the right-hand side are evaluated at algorithmic time t, that is, 
Wp = Wp(�

∗
t
,�∗

t
) , Wd = Wd(�

∗
t
) , R = R(�∗

t
) , Rd = Rd(�

∗
t
,�∗

t
) , gp(�) = gp(�(�

∗
t
)) 

and gd(�) = gd(�(�
∗
t
)) . This also indicates how the two sets of parameters inter-

act. Since parameters �∗ and �∗ are orthogonal, alternating the updates leads to fast 
convergence. Standard errors are obtained from the inverse of Fisher’s information 
matrix

There remains estimation of p. This is usually done by considering the pro-
file log-likelihood for p, given optimal estimates of (�∗,�∗) , that is, we study 
p ↦ �(�̂

∗
(p), �̂

∗
(p), p) where, in general, the MLEs �̂

∗
(p) and �̂∗

(p) depend on the 
explicit choice of the power variance parameter p; for an example of a profile log-
likelihood we refer to Fig. 1, below.

Remarks 3.5 

• We emphasize that covariates may be chosen and pre-processed differently in the 
CPG and in Tweedie’s CP models; this is indicated by choosing different nota-
tion for the covariate spaces (X,Z) and (X∗,Z∗) , respectively. Different pre-pro-
cessing of covariates might be necessary because we aim at optimally modeling 
different responses in the two models. This optimal modeling also includes good 
choices of link functions which may even imply that a CPG GLM does not lead 
to a Tweedie CP DGLM counterpart (or vice versa) because the linear predictor 
structure does not necessarily carry through general choices of link functions. In 
Sect. 3.3 we fully rely on log-links which allow for a one-to-one identification 
scheme between the different GLM frameworks.

• The calculation of the terms of Fisher’s information matrix involving p are a bit 
cumbersome, for this reason we do not give them explicitly.

• As usual in MLE, typically, the dispersion parameters �i will be under-estimated 
because MLE is not unbiased for variance parameter estimation, we refer to 
[17], Sects. 3.2 and 4.3. Using both total claim costs Y and claim counts N, the 
bias is often small, see [17].

We close this subsection by considering the special case of log-links for gp and 
gd . This special choice provides working weight matrices Wp and Wd

(3.25)�∗
t
↦�∗

t+1
=
(
��Wp�

)−1
��Wp

(
R + gp(�)

)
,

(3.26)�∗
t
↦�∗

t+1
=
(
ℨ�Wdℨ

)−1
ℨ�Wd

(
Rd + gd(�)

)
,

(3.27)I(�∗,�∗) =

(
𝔛�Wp𝔛 0

0 ℨ�Wdℨ

)
.

Wp = diag

(
wi

�i

�
2−p

i

)

i=1,…,n

= (p − 1)(2 − p) diag
(vi
2

)
i=1,…,n

= (p − 1)(2 − p)Wd,
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and working residual vectors R = ((Yi∕�i − 1))i=1,…,n and Rd = ((Di∕�i − 1))i=1,…,n . 
This provides us with score equations

thus, in both cases we can use the same working weight matrix Wp.

Theorem  3.6 Assume Tweedie’s CP DGLM holds with covariate spaces X∗ = Z
∗ 

and covariate choices x∗
i
= z∗

i
 for all insurance policies i = 1,… , n . Moreover, 

assume that for both GLMs we choose log-links for gp and gd . The MLE �̂
∗
 of �∗ does 

not depend on the explicit choice of the power variance parameter p ∈ (1, 2) , and 
also the corresponding mean estimates �̂i = exp⟨�̂∗

, x∗
i
⟩ are p-independent. Assume 

that �̂i and �̂i(p) solve the score Eqs.  (3.28)–(3.29) for power variance parameter 
p ∈ (1, 2) . The dispersion parameter estimates scale as a function of power variance 
parameters q ∈ (1, 2) as

Remarks 3.7 

• Theorem 3.6 is a very useful and strong result. In general, we have to run Fisher’s 
scoring method for every power variance parameter p ∈ (1, 2) to find optimal 
MLEs �̂

∗
(p) and �̂∗

(p) . In a second step, the optimal power variance parameter 
is found by considering the profile log-likelihood in p. Under the assumptions 
of Theorem  3.6 we only need to run Fisher’s scoring method once to receive 
MLEs �̂

∗
 and �̂∗

(p) for a fixed power variance parameter p. All dispersion esti-
mates for different power variance parameters are then directly obtained from 
Theorem 3.6, and mean parameter estimates do not vary in p. That is, we can 
directly maximize function q ↦ �(�̂i, �̂i(q), q) where the dispersion �̂i(q) scales 
in q according to Theorem 3.6.

• Theorem 3.6 also highlights that the heterogeneous dispersion case is fundamen-
tally different from the homogeneous one. The mean estimates in the homogene-
ous case depend on the choice of the power variance parameter p through the 
working weight matrix Wp in (3.12). In contrast to the heterogeneous dispersion 
case, a constant dispersion parameter does not leave any room to balance dif-
ferent p’s through portfolio varying dispersions. On the other hand, under the 
assumptions of Theorem  3.6, the mean estimates are not p sensitive, which is 
equivalent to the CPG case.

Proof of Theorem 3.6 The score equations for �∗ and �∗ are under log-link choices 
provide, see (3.14)–(3.15),

(3.28)∇�∗�(�∗,�∗) = 0 ⇔��WpR = 0,

(3.29)∇�∗�(�
∗,�∗) = 0 ⇔ℨ�WpRd = 0,

�̂i(q) =
2 − p

2 − q
�̂i(p) �̂

p−q

i
for all insurance policies i.
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Assume that �i = �i(p) and �i = �i(p) solve the above score equations for given 
power variance parameter p ∈ (1, 2) . Next, we choose power variance parameter 
q ≠ p , and define �̃i = k�i�

p−q

i
 for some k > 0 . We plug �i and �̃i into the first score 

equation for power variance parameter q

thus, the pairs (�i, �̃i) fulfill the first score equation. We now need to massage these 
pairs through the second score equation for power variance parameter q

Next we apply that the pairs (�i,�i) solve the score equations for p. This provides for 
the score function of �∗

Now we still have one parameter k > 0 that we can choose. We require

This choice implies that (3.30) is equal to zero which follows from the fact that the 
pairs (�i,�i) solve the score equations for �∗ = �∗(p) . This finishes the proof. In 
Remarks 3.10 we give a shorter proof.   ◻

∇�∗�(�∗,�∗) =

n∑
i=1

wi

�i

�
1−p

i

(
Yi − �i

)
x
∗
i
= 0,

∇�∗�(�
∗,�∗) = −

n∑
i=1

wi

�i

(
Yi

�
1−p

i

1 − p
−

�
2−p

i

2 − p
−

�i

1 − p

Ni

wi

)
x
∗
i
= 0.

n∑
i=1

wi

�̃i

�
1−q

i

(
Yi − �i

)
x
∗
i
=

1

k

n∑
i=1

wi

�i

�
1−p

i

(
Yi − �i

)
x
∗
i
= 0,

−

n∑
i=1

wi

�̃i

(
Yi

�
1−q

i

1 − q
−

�
2−q

i

2 − q
−

�̃i

1 − q

Ni

wi

)
x
∗
i

=
−1

k

n∑
i=1

wi

�i

(
Yi

�
1−p

i

1 − q
−

�
2−p

i

2 − q
−

k�i

1 − q

Ni

wi

)
x
∗
i

=
p − 1

1 − q

n∑
i=1

wi

�i

(
Yi

�
1−p

i

1 − p

1

k
−

�
2−p

i

2 − p

2 − p

2 − q

1 − q

k(1 − p)
−

�i

1 − p

Ni

wi

)
x
∗
i
.

(3.30)

−

n∑
i=1

wi

�̃i

(
Yi

�
1−q

i

1 − q
−

�
2−q

i

2 − q
−

�̃i

1 − q

Ni

wi

)
x
∗
i

=
p − 1

1 − q

n∑
i=1

wi

�i

(
Yi

�
1−p

i

1 − p

(
1

k
− 1

)
−

�
2−p

i

2 − p

(
2 − p

2 − q

1 − q

k(1 − p)
− 1

))
x
∗
i
.

=
1 − k

k

1

q − 1

n∑
i=1

wi

�i

�
1−p

i

(
Yi − �i
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.
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3.3  Relation between the two GLM approaches

We compare the CPG model to its counterpart being parametrized through Tweed-
ie’s CP model. To start off, recall formulas (2.6)–(2.9). The first formula gives rela-
tionship p = (� + 2)∕(� + 1) ∈ (1, 2) . Since these two parameters are not modeled 
insurance policy dependent, we directly identify them. We start with the gamma 
claim size GLM of Sect. 3.1 using identification (2.7). The means are given by, see 
(3.5),

where we have used canonical link � = (��
p
)−1(�) = −�1−p∕(p − 1) . From identifica-

tion (2.9) we have

From identities (3.31)–(3.32) we conclude that for general link functions it is non-
trivial to derive one parametrization from the other, i.e. this requires quite some fea-
ture engineering to bring the models in line (if possible at all). If we choose log-
links for g2 , gp and gd (these are not the canonical links in all three cases but they are 
convenient because they preserve the right sign convention on the canonical scale) 
we can directly compare the linear predictors

Formulating this differently gives us the following theorem.

Theorem  3.8 Assume all link functions in (3.2), (3.5), (3.21) and (3.22) are cho-
sen to be the log-links. The CPG GLM having constant shape parameter 𝛾 > 0 and 
Tweedie’s CP DGLM with variance parameter p = (� + 2)∕(� + 1) ∈ (1, 2) can be 
identified by (i.e. the resulting two models are equal under) the following equations 
for the linear predictors

Conclusions and Remarks 3.9 

• If we have found a good parametrization for the Poisson claim counts GLM and 
the gamma claim size GLM involving covariates x ∈ X  and z ∈ Z , then Tweed-
ie’s CP model should include all components present in x ∪ z , and x∗ and z∗ 
should only differ if some components of x ∪ z cancel out by a particular choice 

(3.31)

g−1
2
⟨�, z⟩ = � =

�

c

(2.7)
=

��

−�
=

(2 − p)�

�1−p
= (2 − p)

g−1
d
⟨�∗, z∗⟩

�
g−1
p
⟨�∗, x∗⟩

�1−p
,

(3.32)exp ⟨�, x⟩ = �
(2.9)
=

1

�
�p(�) = (2 − p)−1

�
g−1
p
⟨�∗, x∗⟩

�2−p

g−1
d
⟨�∗, z∗⟩ .

⟨�, x⟩ = − log(2 − p) − ⟨�∗, z∗⟩ + (2 − p)⟨�∗, x∗⟩,
⟨�, z⟩ = log(2 − p) + ⟨�∗, z∗⟩ − (1 − p)⟨�∗, x∗⟩.

⟨�∗, x∗⟩ =⟨�, x⟩ + ⟨�, z⟩,
⟨�∗, z∗⟩ = − log(2 − p) − (p − 1)⟨�, x⟩ + (2 − p)⟨�, z⟩.
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of regression parameters � and � . The same holds true if we exchange the roles 
of the two models.

• From the second identity of Theorem 3.8 we see that dispersion �i is constant 
over all policies i if and only if 

 the upper indices (−0) indicate that we exclude the intercept components 
xi,0 = zi,0 = 1 in these scalar products. Identity (3.33) gives the condition under 
which the assumptions of Sect.  3.2.1 are justified. However, in many practical 
insurance pricing examples, we find that the covariate space Z for claim sizes is 
strictly smaller than X  used for claim counts modeling because certain factors 
only influence claim frequencies but are not significant for claim severities. In 
addition, often there are covariates that have opposite signs for claim counts and 
claim sizes. In all these cases (3.33) is not satisfied, and working under a con-
stant dispersion assumption cannot be justified.

• We believe that covariate pre-processing is more easily done within the CPG 
model. The reason being, as stated above, that claim counts and claim sizes often 
behave differently w.r.t. covariate information. Covariate spaces X  and Z allow 
us to explore such differences individually. In Tweedie’s CP model everything is 
merged together which makes it more difficult to choose good covariates and to 
separate the different systematic effects.

• Tweedie’s CP model calibrated with MLE will typically differ from the cor-
responding CPG model if we follow Theorem  3.8. The CPG model involves 
|X| + |Z| = d + q + 2 parameters. This typically results in a Tweedie CP model 
with |X∗| + |Z∗| = 2|X∗| parameters, which is bigger than d + q + 2 if X ≠ Z . 
Thus, in Tweedie’s CP model there are more parameters to be estimated if we 
follow the above guidance.

We close this section by giving the log-likelihoods of Tweedie’s CP DGLM and 
of the CPG GLM under log-link choices. The one of Tweedie’s CP DGLM is given 
by

To make the log-likelihood of the CPG GLM directly comparable to (3.34), we 
make a change of variables (Ni, Z̄i) ↦ (Ni, Yi) by setting Yi = NiZ̄i∕wi . This gives us 
log-likelihood

(3.33)(p − 1)
⟨
� (−0), x

(−0)

i

⟩
= (2 − p)

⟨
�(−0), z

(−0)

i

⟩
for all i,

(3.34)
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Assuming covariate relationship x∗
i
= z∗

i
 we can re-parametrize the first log-likeli-

hood (3.34) by setting �+ = (2 − p)�∗ − �∗ and �+ = −(1 − p)�∗ + �∗ , this gives us 
(we drop irrelevant terms)

This proves under x∗
i
= z∗

i
= xi ∪ zi that the CPG model is nested in Tweedie’s CP 

model and we have for given p = (� + 2)∕(� + 1)

this explicitly uses that we have the same data representation (Ni, Yi)i in both 
log-likelihoods.

Remarks 3.10 

• Under the assumptions of Theorem  3.8 and additionally assuming that 
xi = zi = x∗

i
= z∗

i
 , we receive an identity in (3.36). Since the mean estimates in 

the CPG case do not depend on the particular choice of the shape parameter � , 
the same must hold true for Tweedie’s CP DGLM model under identical covari-
ates xi = zi = x∗

i
= z∗

i
 . Using Proposition 2.1 we then receive the dispersion scal-

ing of Theorem 3.6, thus, this gives us a second shorter proof for Theorem 3.6.
• If x∗

i
= z∗

i
= xi ∪ zi and xi ≠ zi , the CPG model is strictly nested in Tweedie’s 

CP model and, in general, we do not get an identity in (3.36). In that case, Theo-
rem 3.8 reflects an ideal world because noise in the data prevents MLE estimated 
parameters (estimated separately in both models) from strictly satisfying the 
identities in Theorem 3.8.

• To perform model selection in the general case we can use Akaike’s informa-
tion criterion (AIC) [1]. This corrects both sides of (3.36) by the number of 
regression parameters involved, thus, with AIC the model with the smaller value 
should be preferred from either 

 AIC applies because in both models we use the same data representation (Ni, Yi)i 
and both models are evaluated in the MLEs for the corresponding parameters. 
We emphasize that for estimating the CPG GLM we use in (3.36) sufficient 

(3.35)
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statistics Yi = NiZ̄i∕wi . If, instead, we use the individual claim sizes Zi,j to esti-
mate the CPG GLM, AIC does not apply because the log-likelihoods to be com-
pared use the available data in different ways.

4  Numerical examples

We study two numerical examples to benchmark the two modeling approaches of 
Theorem 3.8. First, we design a synthetic data example that fully meets the assump-
tions of Theorem 3.8. Thus, there is no model uncertainty involved in this first (syn-
thetic) example about underlying distributions, covariate spaces and link functions, 
and we can fully focus on estimating parameters with MLE in the CPG GLM and 
in Tweedie’s CP DGLM. These results are then compared to neural network regres-
sion approaches on the same synthetic data. In contrast to GLMs, neural networks 
explore optimal covariate selection themselves. This is done in Sect. 4.2.2. Our sec-
ond example in Sect. 4.3 is a real data example. This additionally raises the issue of 
model uncertainty because the real data has not been generated by a CPG model. 
Both examples are based on the motorcycle insurance data swmotorcycle used 
in [11], this data is available through the R package CASdatasets [3], see Listing 
1 for an excerpt of the data. For the synthetic data we sample a portfolio of covari-
ates from the original data, and then generate claims with a CPG GLM designed 
according to the assumptions of Theorem 3.8. For the real data example we fully 
rely on the swmotorcycle data and we use the corresponding claim observations.

4.1  Description of motorcyle data

We briefly describe the data, for more information we refer to “Appendix B”, below. 
The data comprises comprehensive insurance for motorcycles which covers loss or 
damage of motorcycles other than collision, for instance, caused by theft, fire or 
vandalism. The data is aggregated on insurance policy level for years 1994–1998. 
The data is shown in Listing 1. We have applied some pre-processing, e.g., we have 
dropped all policies that have an exposure equal to zero.

Listing 1: Swedish motorcycle data swmotorcycle of [11] from the R package CASdatasets [3].
1 ’data.frame ’: 62036 obs. of 9 variables:

2 $ Age : num 36 52 25 50 45 24 52 47 30 32 ...

3 $ Gender : Factor w/ 2 levels "Female","Male": 2 2 2 2 1 1 1 1 1 1 ...

4 $ Zone : Factor w/ 7 levels "Zone 1","Zone 2",..: 4 4 4 3 3 1 4 4 4 4 ...

5 $ McClass : int 1 4 7 4 6 3 4 4 3 3 ...

6 $ McAge : num 12 19 9 14 11 2 16 17 16 16 ...

7 $ Bonus : int 6 4 3 1 7 6 2 7 1 4 ...

8 $ Exposure : num 0.0274 0.4986 0.3863 1.9507 1.5014 ...

9 $ ClaimNb : int 0 0 0 0 0 0 0 0 0 0 ...

10 $ ClaimCosts: int 0 0 0 0 0 0 0 0 0 0 ...

We briefly describe the variables, the following enumeration refers to lines 2–10 
of Listing 1: 
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 2. Age: age of motorcycle owner in {18,… , 70} years (we cap at 70 because of 
scarcity above);

 3. Gender: gender of motorcycle owner either being Female or Male;
 4. Zone: seven geographical Swedish zones being (1) central parts of Sweden’s 

three largest cities, (2) suburbs and middle-sized towns, (3) lesser towns except 
those in zones (5)–(7), (4) small towns and countryside except those in zones 
(5)–(7), (5) Northern towns, (6) Northern countryside, and (7) Gotland (Swe-
den’s largest island);

 5. McClass: seven ordered motorcycle classes received from the so-called EV 
ratio defined as (Engine power in kW × 100)/(Vehicle weight in kg + 75 kg);

 6. McAge: age of motorcycle in {0,… , 30} years (we cap at 30 because of scarcity 
beyond);

 7. Bonus: ordered bonus-malus class from 1 to 7, entry level is 1;
 8. Exposure: total exposure in yearly units in interval [0.0274, 31.3397], the 

shortest entry referring to 1 day and the longest one to more than 31 years;1

 9. ClaimNb: number of claims N on the policy;
 10. ClaimCosts: total claim costs S =

∑N

j=1
Zj on the policy (thus, we do not have 

information about individual claims Zj but only about sufficient statistics Z̄ on 
each policy).

The data is illustrated in “Appendix B”.

4.2  Synthetic data example

This section is based on synthetic (simulated) data from a CPG GLM.

4.2.1  A generalized linear model approach

We start by describing the simulation of the synthetic data. We randomly choose 
n = 250�000 insurance policies from dat=swmotorcycle using the R code:

Based on this portfolio we generate claims (N, Y) using two GLMs that fulfill 
the CPG assumptions of Theorem 3.8, the modeling details are specified in columns 
1–3 of Table 1. We especially emphasize that the covariate spaces X  and Z differ for 
claim counts and claim sizes.

CPG GLM We estimate the Poisson claim counts GLM and the gamma claim 
amounts GLM separately, according to Sect.  3.1 and under log-link choices. The 
results are presented in column ‘estimated CPG’ of Table 1, the brackets provide 
one estimated standard deviation received from the inverse of Fisher’s informa-
tion matrix. Note that we can estimate all regression parameters �k and �k without 

��������� < − ���[������(� = �(� ∶ ����(���)), ���� = ��,���, ������� = 
	��), ]

1 For a rigorous pricing exercise one should truncate longer exposures, say, to one accounting year, oth-
erwise one implicitly considers a survival bias on policies with longer exposures, supposed that people 
give up motorcycling more likely after a claim.



208 Ł. Delong et al.

1 3

Table 1  Synthetic CPG GLM 
example: the first 3 columns 
show the chosen (true) model; 
column ‘estimated CPG’ shows 
the resulting MLEs (with 
estimated std.dev. brackets)

Variable Parameter True Estimated Standard
Value Param. CPG deviation

Intercept �0 13.80 12.99 (1.46)
��� �1 −0.180 −0.188 (0.010)

���2 �2 1.70 ×103 1.74×103 (0.12×103)
������ �3 0.30 0.36 (0.07)
����� �4 −0.60 −0.58 (0.05)
����� �5 −1.10 −1.07 (0.06)
����� �6 −1.50 −1.46 (0.05)
����� �7 −1.60 −1.39 (0.10)
������� �8 −14.50 −13.42 (1.72)

�������2 �9 2.30 2.16 (0.27)

log(�������) �10 12.60 11.52 (1.58)

�������3 �11 −0.140 −0.134 (0.017)

����� �12 −0.140 −0.147 (0.008)

�����2 �13 2.60×103 2.86×103 (0.36×103)
Intercept �0 8.650 8.650 (0.143)
��� �1 0.110 0.113 (0.008)

���2 �2 −1.40×103 −1.44 ×103 (0.10 ×103)
������� �3 8.0 ×102 7.3 ×102 (1.0×102)

�����2 �4 −2.80 ×102 −2.90 ×102 (0.13 ×102)

�����3 �5 1.80 ×103 1.91 ×103 (0.12 ×103)

�����4 �6 −3.0 ×105 −3.3 ×105 (0.5 ×105)
Shape param. � 1.50 1.56 (0.04)

1.0 1.2 1.4 1.6 1.8 2.0

−3
04

00
−3

03
50

−3
03

00
−3

02
50

gamma log−likelihood for shape parameter

shape parameter gamma

lo
g−

lik
el

ih
oo

d

1.36 1.37 1.38 1.39 1.40 1.41

−4
31

22
−4

31
20

−4
31

18
−4

31
16

−4
31

14
−4

31
12

−4
31

10

Tweedie profile log−likelihood for p estimation

power variance parameter p

lo
g−

lik
el

ih
oo

d

Fig. 1  (lhs) Log-likelihood � ↦ �(�̂, �) of the gamma GLM to estimate shape parameter � for given �̂ ; 
(rhs) Tweedie profile log-likelihood p ↦ �(�̂

∗
, �̂

∗
(p), p) to estimate p 
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specifying shape parameter 𝛾 > 0 explicitly. Most estimated parameters are within 
one standard deviation of the true parameter values. The true parameters have been 
chosen such that they resemble the true data swmotorcycle. The true data has an 
observed claim frequency of only 1.05%, see “Appendix B”. In the present exam-
ple, claims are scarce too, and the gamma claim size GLM has been estimated on 
(only) 2’795 claims. The parameter estimates are remarkably accurate (we do not 
have model uncertainty here, only parameter estimation uncertainty). We conclude 
that this model can be calibrated well using the separate approach for claim counts 
and claim amounts.

Figure  1 (lhs) considers the log-likelihood function � ↦ �(�̂, �) of the gamma 
GLM to estimate shape parameter � , we also refer to score Eq. (3.9). From this we 
find MLE �̂ = 1.56 , and the inverse of Fisher’s information matrix provides an esti-
mated standard deviation of 0.04 for this estimate. Thus, the estimated shape param-
eter is slightly too high, though still within two standard deviations of the true value 
of � = 1.5 . We again highlight that this estimate is based on only 2’795 claims. 
Moreover, we remark that �̂  has been used in the standard deviation estimates of 
Table 1, see (3.8).

Tweedie’s DGLM Next we turn our attention to Tweedie’s CP case. The true val-
ues � , � and � as well as their MLE counterparts �̂ , �̂ and �̂  from the CPG model 
are transformed with Theorem 3.8 to receive the same model in Tweedie’s CP para-
metrization, this is illustrated in the first four columns of Table 2. In a first calibra-
tion step for Tweedie’s CP model, we choose p = 1.39 which is the optimal power 
variance parameter estimate of the CPG model, see last line in column 4 of Table 2. 
We then calibrate Tweedie’s CP DGLM model for this power variance parameter p 
with Fisher’s scoring method (3.25)–(3.26); as starting values for the algorithm we 
use the estimates from the CPG model (in italic in Table 2). Fisher’s scoring method 
converges in 7 iterations with these initial values. Due to (3.36) we receive a model 
that has a bigger log-likelihood than its CPG counterpart (we include all constants in 
this consideration so that the log-likelihoods are directly comparable).

In the next step, we optimize over the power variance parameter p. Therefore, 
we use Theorem  3.6, which says that the mean estimates �̂i do not depend on p, 
and which provides the p-scaling for dispersion parameter MLEs �̂i(p) . This 
allows us to directly plot the profile log-likelihood p ↦ �(�̂

∗
, �̂

∗
(p), p) as a func-

tion of p ∈ (1.36, 1.41) , see Fig. 1 (rhs). From this figure, we find maximizing value 
p̂ = 1.39 , which is close to the true value of p = 1.4 . The second last column in 
Table 2 shows the resulting MLEs �̂

∗
 and �̂∗

(p̂) of the optimal Tweedie’s CP model. 
A first observation is that the parameter estimates from Tweedie’s CP model are not 
as close to the true values as the MLEs from the CPG model. However, model selec-
tion should not be based on this observation: note that the (true) CPG model has 22 
parameters and Tweedie’s CP model has 33 parameters, therefore, we expect some 
differences in model calibration.

We summarize the two estimated models in Table 3. On row (a) we compare the 
log-likelihoods �CPG(�̂, �̂, p̂) and �Tw(�̂

∗
, �̂

∗
, p̂) of the estimated models CPG and 

Tweedie’s CP, see also (3.36), to the one of the true model �(�∗,�∗, p) : we observe 
that both models slightly overfit to the data, with Tweedie’s CP model having a 
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slightly larger overfit [this is consistent with (3.36)]. Therefore, we penalize in AIC 
the log-likelihoods of the models by the number of parameters involved, see (3.37). 
The AIC values are given on row (b) of Table  3, and we give preference to the 
CPG calibration. Performing a likelihood-ratio test having the CPG model as null 

Table 2  Synthetic example: the first 3 columns show the chosen (true) model; column ‘estimated CPG’ 
(in italic) shows estimated parameters from the CPG model; column ‘estimated Tweedie’s CP’ shows the 
MLEs from Tweedie’s CP model (with estimated std.dev. in brackets)

Variable Parameter True Estimated Estimated Standard
Value Param. CPG Param. Tweedie’s CP Deviation

Intercept �∗
0

22.45 21.64 19.50 (1.87)
��� �∗

1 − 7.0×102 − 7.5 ×102 − 7.5 ×102 (1.3 ×102)

���2 �∗
2 3.0×104 3.1 ×104 3.0 ×104 (1.6 ×104)

������ �∗
3

0.30 0.36 0.40 (0.09)
����� �∗

4
− 0.60 − 0.58 − 0.52 (0.07)

����� �∗
5

− 1.10 − 1.07 − 0.99 (0.08)
����� �∗

6
− 1.50 − 1.46 − 1.42 (0.07)

����� �∗
7

− 1.60 − 1.39 − 1.36 (0.12)
������� �∗

8
− 14.42 − 13.35 − 10.79 (2.20)

�������2 �∗
9

2.30 2.16 1.72 (0.35)

log(�������) �∗
10

12.60 11.52 9.39 (2.03)

�������3 �∗
11

− 0.140 − 0.134 − 0.103 (0.0221)

����� �∗
12

− 0.140 − 0.147 − 0.196 (0.047)

�����2 �∗
13 − 2.54 ×102 − 2.62 ×102 − 1.98 ×102 (0.77 ×102)

�����3 �∗
14 1.80 ×103 1.91 ×103 1.63×103 (0.49 ×103)

�����4 �∗
15 − 3.0 ×105 − 3.3 ×105 − 2.9 ×105 (0.8 ×105)

intercept �∗
0

0.1808 0.6909 − 0.5702 (0.9114)
��� �∗

1
0.1380 0.1420 0.1429 (0.0061)

���2 �∗
2 − 1.5 ×103 − 1.6×103 − 1.6 ×103 (0.1 ×103)

������ �∗
3

− 0.120 − 0.140 − 0.115 (0.043)
����� �∗

4
0.240 0.228 0.269 (0.034)

����� �∗
5

0.440 0.417 0.462 (0.037)
����� �∗

6
0.60 0.57 0.59 (0.03)

����� �∗
7

0.640 0.543 0.558 (0.060)
������� �∗

8
5.848 5.288 6.714 (1.074)

�������2 �∗
9

− 0.920 − 0.845 − 1.094 (0.169)

log(�������) �∗
10

− 5.040 − 4.500 − 5.654 (0.990)

�������3 �∗
11 5.6 ×102 5.2 ×102 6.9 ×102 (1.1 ×102)

����� �∗
12 5.6 ×102 5.7×102 5.2×102 (2.3×102)

�����2 �∗
13 − 1.78 ×102 − 1.88×102 − 1.74×102 (0.38 ×102)

�����3 �∗
14 1.1 ×103 1.2×103 1.0 ×103 (0.2 ×103)

�����4 �∗
15 − 2 ×105 − 2 ×105 − 2 ×105 (0.4 ×105)

variance param. p 1.40 1.39 1.39
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hypothesis model nested in Tweedie’s CP model, gives a p-value of 34%, thus, we 
do not reject the null hypothesis on a 5% significance level. This gives support that 
we should go for the smaller CPG model in this example. Row (c) of Table 3 gives 
the rooted mean square error (RMSE) between the true model means wi�i and their 
estimated counterparts wi�̂i = wi�̂i�̂i ; rows (d)–(g) show average means and disper-
sions as well as the corresponding standard deviations. We observe that these figures 
match the true values quite well. Recall that these figures are based on one simula-
tion from the true model for each insurance policy, thus, they involve simulation 
error (but they do not involve model error because we only assume parameters � , � 
and p as unknown in this example). Moreover, we remark that the dispersion is not 
under-estimated, here, we also refer to the last bullet point of Remark 3.5.

Finally, in Fig. 2 we plot the predicted means �̂i against the true values �i . The 
left-hand side compares the two estimated models against the true model, and the 
right-hand side compares the two estimated models against each other. From these 
plots we conclude that both models are very accurate, the CPG estimated one 
(orange) being slightly closer to the true model than its Tweedie’s CP counterpart 
(green). Summarizing: This synthetic example gives evidence supporting industry 
practice on focusing on the CPG model. Specifying covariate spaces is easier in the 
CPG case because systematic effects of claim counts and claim amounts are clearly 
separated, and in our example accuracy is slightly higher because Tweedie’s CP 
seems to slightly overfit in our example.

4.2.2  A neural network regression approach

Next we explore neural network regression models on the same synthetic data. 
Neural networks have the capability of representation learning which means that 
they can perform covariate engineering themselves, we refer to Sections  4 and 5 
of [21]. Therefore, covariates can be provided in their raw form to neural networks. 
The neural networks then, at the same time, pre-process these covariates and pre-
dict the response variables. Starting from a GLM, the required changes to achieve 
this representation learning are comparably small. We illustrate this in the present 

Table 3  Synthetic example: summary statistics of fitted CPG and Tweedie’s CP GLMs

True Estimated Estimated
Parameters CPG Tweedie CP

(a) log-likelihood �(�,�, p) -43’125 -43’115 -43’109
(b) Akaike information criterion AIC 86’273.56 86’283.27
(c) Rooted mean square error (RMSE) 58.30 80.49
(d) Average of means wi�i = wi�i�i 340 346 347
(e) Std. dev. in means wi�i = wi�i�i 835 853 857
(f) Average of dispersions �i 4530 4724 4746
(g) Std. dev. in dispersions �i 1847 1898 1924
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section. Alternatively, one may also be interested in using generalized additive mod-
els (GAMs). GAMs are more flexible in modeling different functional forms in the 
components of the covariates compared to GLMs, however, they do not automati-
cally allow for flexible interaction modeling between covariate components. For this 
reason, we favor neural networks over GAMs.

We first define the (raw) covariate space X† which is going to be used throughout 
this section:

where we use dummy coding for the categorical variable ���� ∈ {0, 1}4 . In contrast 
to Table 1, we do not specify the continuous variables in all its functional forms, but 
we let the neural network find these functional forms. A neural network is a function

that consists of a composition of a fixed number of hidden network layers, each of 
them having a certain number of hidden neurons. For an explicit mathematical def-
inition we refer to Section  3.1 in [21]. x† has the interpretation of being the raw 
covariate, and x = �(x†) ∈ ℝ

d can be interpreted as the (network) pre-processed 
covariate. These pre-processed covariates �(x†) are then used in a classical GLM, 
e.g., for claim counts we may set for the log-link choice, see (3.2),

note that we use a slight abuse of notation here because strictly speaking �(x†) 
does not include an intercept term for �0 , so this always needs to be added. Neural 

(4.1)x
† = (���, ������, ����, �������, �����) ∈ X

† ⊂ ℝ
8,

(4.2)� ∶ X
†
→ ℝ

d, x
†
↦ x = �(x†),

(4.3)

� ∶ X
†
→ ℝ+, x

†
↦ �(x†) = exp

⟨
�,�(x†)

⟩
= exp

{
�0 +

d∑
k=1

�k�k(x
†)

}
,

Fig. 2  (lhs) Comparison of estimated means �̂i versus true means �i : CPG GLM (orange) and Tweedie 
CP DGLM (green), (rhs) CPG GLM means versus Tweedie CP DGLM means over all i = 1,… , n poli-
cies
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network regression function (4.3) involves regression parameters � ∈ ℝ
d+1 as well 

as network weights � ∈ ℝ
r which parametrize network function � = �� . The dimen-

sion r of � depends on the complexity of the chosen network � . Network fitting now 
trains at the same time network parameter � for an optimal covariate pre-processing 
as well as GLM parameter � for response prediction. State-of-the-art fitting uses 
variants of the gradient descent algorithm, and a good performance depends on the 
complexity of � , we just mention the universal approximation property of appropri-
ately designed neural networks. For more information, we refer to the relevant litera-
ture, in particular, to [21]. Based on this reference we explore (4.3) and its counter-
parts for claim counts and Tweedie’s CP model. In all three prediction problems we 
use the identical covariate space X† , and only network function � will differ in the 
weights � to bring covariates into the appropriate form for the corresponding predic-
tion task.

Poisson claim counts We start by modeling claim counts using neural network 
approach (4.3). We use the R library keras to implement this, and we use exactly 
the same architecture as in Listing 4 of [14], the only thing that changes is the 
dimension of X† from 40 on line 1 of Listing 4 in [14] to 8 in the present example, 
see (4.1). This results in r = 655 and d + 1 = 11 parameters. We fit these parameters 
in the usual way by considering 80% of the data for training and 20% of the data 
for out-of-sample validation to track overfitting in the gradient descent algorithm 
(we run 100 epochs on batch size 5000). We then choose the parameter that has the 
best out-of-sample performance on the validation data. To this network solution we 
apply the bias regularization step of Listing 5 in [21] to make the model unbiased.

On rows (a1)–(a2) of Table  4 we present the results for the claim counts neu-
ral network model. We provide the Poisson deviance losses of the true model �i 
(which is known here because we simulate from this model), the intercept model 
that does not use covariate information (i.e. is only based on intercept parameter �0 ), 
the claim counts GLM (upper part of Table 1) and its neural network counterpart. 
We observe that both regression models slightly overfit to the data 8.4366 ⋅ 10−2 and 
8.4393 ⋅ 10−2 , respectively, compared to the true model loss of 8.4431 ⋅ 10−2.

On row (a2) we provide the RMSE between the true model means �i and the esti-
mated ones �̂i . We note that the Poisson GLM has a smaller RMSE than the neural 
network Poisson regression model. This is not surprising because the Poisson GLM 
uses the right functional form (no model uncertainty) and only estimates regression 
parameter � whereas the neural network regression model also determines this func-
tional form for the raw covariates x† . In Fig. 3 (lhs) we compare the resulting esti-
mated frequencies to the true ones on all individual insurance policies i = 1,… , n . 
From this plot we conclude that both models do a fairly good job because the dots 
lie more or less on the diagonal (which reflects the perfect model).

Gamma claim sizes Next we consider a neural network approach for the gamma 
claim sizes. This essentially means that we replace linear predictor (3.5) by the fol-
lowing neural network predictor (under a log-link choice for g2)
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where � is a neural network function (4.2) that may have the same structure as the 
one used for the Poisson regression model (4.3), but typically differs in network 
weights � . For simplicity, we use exactly the same neural network architecture as in 
the Poisson case, only the exposure offset is dropped and the Poisson deviance loss 
function is changed to the gamma deviance loss function (including weights), in line 
with the distributional assumptions made.

The results are presented on rows (b1)–(b2) of Table 4 and Fig. 3 (rhs) (we run 
1000 epochs on batch size 5000 and we callback the model with the smallest vali-
dation loss). Again we receive reasonably good results from the network approach, 
i.e., covariate engineering on X† is done quite well by the network, we emphasize 
that these results are based on only 2’795 claims. But we also see from Fig. 3 (rhs) 
that individual predictions spread more around the diagonal than in the gamma 
GLM case (where we assume perfect knowledge about the functional form of the 

(4.4)

� ∶ X
†
→ ℝ+, x

†
↦ �(x†) = exp

⟨
�,�(x†)

⟩
= exp

{
�0 +

d∑
k=1

�k�k(x
†)

}
,

Table 4  Comparison of deviance losses and RMSEs of the true (synthetic) model, the intercept model 
not using covariate information, the GLM approaches and the neural network approaches

True model Intercept GLM model Neural network
Model Model

(a1) Poisson deviances for Ni (in 10−2) 8.4431 9.8052 8.4366 8.4393

(a2) RMSE between �i and �̂i 2.06% 0.18% 0.55%

(b1) Gamma deviances for Z̄i 0.7058 1.1442 0.7052 0.7015

(b2) RMSE between �i and �̂i 27’210 693 4’460

Fig. 3  (lhs) Comparison of estimated models versus true model: (lhs) Poisson claim counts models for 
Ni ; (rhs) gamma claim size models for Z̄i
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regression function). Better accuracy can only be achieved by having more claim 
observations.

Next, we estimate the shape parameter � . This is done analogously to the gamma 
GLM case by plotting the corresponding log-likelihood �(�) as a function of � . This 
gives estimate �̂ = 1.57 , which is slightly too large but still reasonable compared to 
the true value of � = 1.5 . A too high shape parameter implies a too low dispersion, 
which is a sign of over-fitting to the observations.

We conclude with the summary statistics for the neural network approaches in 
Table  5 column ‘estimated CPG’, which look fairly similar to the GLM ones in 
Table 3. We obtain a larger RMSE, which is not surprising because we have more 
model uncertainty due to missing covariate knowledge, this is also obvious from 
Fig. 3.

Tweedie’s compound Poisson neural network approach First, we remark that, in 
general, there is no simple comparison between a CPG and a Tweedie CP neural net-
work approach similar to (3.34)–(3.35). The relation (3.34)–(3.35) is strongly based 
on the fact that we can directly compare linear predictors under suitable choices of 
covariate spaces. Since the networks given (4.2) transform covariates in a non-trivial 
way under non-linear activation functions, there is no hope to get an easy compari-
son between the models unless the network architectures are chosen in a very spe-
cific way, i.e.  artificial way, so to say. Therefore, we do not aim to nest the CPG 
neural network into Tweedie’s CP neural network model, but we directly focus on 
modeling the latter. This essentially implies that we have to replace linear predictors 
(3.21)–(3.22) by the following two-dimensional neural network predictors (under 
log-link choices for gp and gd)

where � is a neural network function (4.2). The first component of (�,�)(x†) ∈ ℝ
2
+
 

predicts the total claim costs Y and the second component estimates the dispersion 
parameter � . We use one network � to simultaneously perform this prediction task 
for mean and dispersion parameter. We implement this in the R library keras 
and we use the same architecture as in Listing 4 of [14], but we need to change the 

(�,�) ∶ X
†
→ ℝ

2
+
, x

†
↦ (�,�)(x†) =

(
exp

⟨
�∗,�(x†)

⟩
, exp

⟨
�∗,�(x†)

⟩)
,

Table 5  Synthetic example: summary statistics of the fitted CPG and Tweedie’s CP neural network mod-
els

True Estimated Estimated
Parameters CPG Tweedie CP

(a) Network log-likelihood �(�,�, p) -43’125 -43’110 -43’079
(b) Power variance parameter p 1.400 1.389 1.390
(c) Rooted mean square error (RMSE) 190.33 225.50
(d) Average of means wi�i = wi�i�i 340 335 357
(e) Std. dev. in means wi�i = wi�i�i 835 812 872
(f) Average of dispersions �i 4530 4595 5264
(g) Std. dev. in dispersions �i 1847 1812 1950
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input dimension to 8 and the output dimension to 2. The exposures wi are treated as 
weights as follows

This requires a custom made loss function in keras for parameter estimation, the 
details are provided in Listing 2 in the “Appendix”. We fit this model with the gradi-
ent descent algorithm exactly using the same methodology as outlined above (call-
back of the lowest validation loss model after 100 epochs on batch sizes 5000).

In order to come up with the optimal neural network model we need to fit neural 
networks for multiple power variance parameters p, because there is no result simi-
lar to Theorem 3.6 that allows for a shortcut. Of course, this disadvantages Tweed-
ie’s CP neural network model from a computational point of view. We come up with 
an optimal power variance parameter estimate of p̂ = 1.390 , which yields then the 
results in the last column of Table 5. From the figures on rows (c)–(g) we conclude 
that Tweedie’s CP approach is not fully competitive with the CPG fitting. These dif-
ferences are also illustrated in Fig. 4 with the CPG approach being slightly closer to 
the true model means. Nevertheless, all these estimates look very reasonable and the 
estimated neural network seems to capture the crucial features of the true model.

Conclusions from our synthetic data example Our findings support industry prac-
tice of focusing on the CPG parametrization. Our estimated models based on this 
parametrization are closer to the true model than the ones obtained from Tweedie’s 
CP parametrization. If we work under GLM assumptions we need to pre-process 
covariates which is easier in the CPG parametrization because systematic effects 
of claim counts and claim amounts can be separated. If we work under neural net-
work regression models, model calibration is not efficient under Tweedie’s CP para-
metrization because we need to run gradient descent algorithms on multiple power 

�(�,�) ∝

n∑
i=1

wi

[
1

�i

(
Yi

�
1−p

i

1 − p
−

�
2−p

i

2 − p

)
−

Ni∕wi

p − 1
log�i

]
.

Fig. 4  (lhs) comparison of estimated means �̂i versus true means �i : CPG neural network (orange) and 
Tweedie CP neural network (green), (rhs) CPG network means versus Tweedie CP neural network means 
over all i = 1,… , n policies
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variance parameters p to find the optimal model. Moreover, in our example, the CPG 
case leads to more accurate predictive models.

4.3  Real data example: an outlook

In view of the previous example everything seems to be fairly clear. However, our 
synthetic data is based on the very strong property of having gamma claim sizes 
with constant shape parameter � over the whole insurance portfolio. This assump-
tion may be critical in real insurance applications. We briefly analyze it in terms of 
our real data example given in “Appendix B”, and we give an outlook in case this 
assumption is not fulfilled. We keep this section very short, and we mainly view it as 
a motivation to conduct future research in this direction.

There are two possibilities in which the constant shape parameter assumption 
may fail, either the claim sizes are gamma distributed, but the shape parameter �i is 
also insurance policy i dependent, or the gamma distribution is inappropriate due to 
that the claim sizes exhibit too heavy tails. We explore this on the real data exam-
ple provided in “Appendix B”. For this it suffices to focus on the gamma claim size 
model, i.e.  we do not study claim counts in this real data example. Moreover, to 
minimize covariate pre-processing we explore a gamma neural network regression 
model on these claim sizes, the chosen model architecture is identical to the one 
used in (4.4), in particular, it does covariate engineering itself.

Table 6 shows the (in-sample) gamma deviance losses of the intercept model and 
the neural network regression model. Obviously, the neural network approach has a 
better performance (note that the network model has been received by a proper train-
ing-validation analysis as described above). Using the resulting mean estimates �̂i we 
can estimate the (constant) shape parameter � . This is illustrated in Fig. 5 (lhs): we 
estimate �̂ = 0.75 . Thus, we receive a shape parameter smaller than 1, which pro-
vides over-dispersion 1∕�𝛾 = 1.33 > 1 , i.e., the estimated gamma densities are strictly 
decreasing. This fact requires further examination because there might be two situ-
ations: either the true shape parameter is smaller than 1 (and everything is fine), 
or the claim sizes are more heavy tailed than a gamma distribution allows. This is 
typically compensated by over-dispersion in the estimated model. We analyze this 
warning signal on our real data.

Figure 5 (rhs) gives the Tukey–Anscombe plot of the gamma deviance residuals 
against the fitted means. This plot supports the model choice because we cannot see 
any particular structure in the figure, it also supports the constant shape parameter 
assumption on � . Figure 6 gives the QQ-plot and it compares the observed claims 

Table 6  Comparison of gamma 
deviance losses on real data: 
intercept model and gamma 
neural network regression model

Intercept Neural network
Model Model

Gamma deviances losses 
for Z̄i

2.0854 1.5863
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against one simulation from the fitted model. Also these two plots look quite reason-
able, one may only question the upper tail of the QQ-plot.

Conclusions The short analysis on the real data has shown that for the motorcycle 
claims data the gamma claim size model is fairly reasonable, thus, supporting the 
CPG model. On different data, one may relax the constant shape parameter assump-
tion on � . This may result in a DGLM for gamma claim sizes (which is known in 
industry) and a Poisson GLM for claim counts. Again this model can easily be fit-
ted in the Poisson-gamma parametrization, however, this approach does not have a 
Tweedie’s CP counterpart relying on a fixed parameter p, giving more support to the 
industry preference of choosing the Poisson-gamma parametrization.
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5  Conclusion

We have revisited the compound Poisson model with i.i.d. gamma claim sizes. This 
model allows for two different parametrizations, namely, the Poisson-gamma para-
metrization and Tweedie’s compound Poisson parametrization. We have provided 
results for GLMs illustrating when the two parametrizations are identical, and we 
have provided a theorem that allows for efficient fitting of power variance param-
eters in Tweedie’s parametrization (under log-link choices for the GLMs).

In the applied section, we have analyzed why the insurance industry gives pref-
erence to the Poisson-gamma parametrization. Based on examples, we find that, 
indeed, this parametrization is easier to fit, and results turn out to be more accurate 
in our examples. In particular, under neural network regression models we give a 
clear preference to the Poisson-gamma parametrization because Tweedie’s version 
does not possess an easy and efficient way in estimating the power variance param-
eter. That is, the Tweedie version is computationally clearly lacking behind the Pois-
son-gamma case.

For our real data example it turns out that the gamma claim size model with con-
stant shape parameter is quite reasonable. However, in many other applications this 
is not the case. Therefore, insurance industry explores double GLMs for a flexible 
modeling of shape parameters of claim sizes; on the other hand, a case-dependent 
p modeling in Tweedie’s compound Poisson parametrization is not (easily) feasi-
ble. For modeling more heavy tailed claim sizes, mixture models are a promising 
proposal.

Appendix

A Generalized linear models

GLMs have been introduced in [9], and they have been studied in the monograph 
[7]. GLMs are based on the EDF (2.2). The EDF has been studied extensively in [2, 
4, 5], and its properties have been revisited in [21]. The original introduction of EDF 
distributions (2.2) is constructive from which it follows that the effective domain � 
is a convex set and that the cumulant function � is a smooth and convex function on 
the interior of the effective domain �̊ . Moreover, we get the following moments for 
Y having EDF distribution (2.2)

(A.1)
� =�[Y] = ��(�), Var(Y) =

�

w
���(�) and

�[exp{rY}] = exp

{
w

�
(�(� + r�∕w) − �(�))

}
,
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for |r| sufficiently small such that 𝜃 + r𝜙∕w ∈ �̊ for 𝜃 ∈ �̊ . Convexity of � implies 
existence of the canonical link providing canonical parameter and variance function, 
respectively,

GLMs are based on a linear predictor � for modeling the mean parameter � = �[Y] . 
Assume we have (d + 1)-dimensional covariates x ∈ X = {1} ×ℝ

d . The linear pre-
dictor � = �(x) is received by choosing a suitable link function g(⋅) such that the fol-
lowing relationship holds

for a given regression parameter � ∈ ℝ
d+1 . We need to ensure to have a well-defined 

GLM by

This might be a challenge for (one-sided) bounded effective domains � and may 
require a careful choice of the link function g(⋅).

Assume we have n independent pairs of random variable and covariates (Yi, xi) 
following an EDF distribution (2.2) with the same cumulant function � ; we choose 
the same link function g(⋅) to receive linear predictors �i = ⟨�, xi⟩ . The log-likeli-
hood function of this model is

with canonical parameter �i = (��)−1(�i) =
(
(��)−1◦g−1

)
(�i) . The score w.r.t. � is 

obtained by the gradient

We define the diagonal working weight matrix W and working residual vector R by

This allows us to write the score equation for finding the MLE of regression param-
eter � by

� = (��)−1(�) and V(�) =
(
���

◦(��)−1
)
(�).

g(�) = � = ⟨�, x⟩,

(A.2)𝜃 = (𝜅�)−1(𝜇) =
�
(𝜅�)−1◦g−1

�
(𝜂) =

�
(𝜅�)−1◦g−1

�⟨�, x⟩ ∈ �̊.
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i=1

wi

�i

(
Yi�i − �

(
�i
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with design matrix � = (x1,… , xn)
� ∈ ℝ

n×(d+1) . MLE system (A.3) is solved either 
using Fisher’s scoring method or the iteratively re-weighted least squares (IRLS) 
algorithm, see [7, 9]. For Fisher’s scoring method we explore the scoring updates

where all terms on the right-hand side are evaluated for algorithmic time t. It has 
been pointed out by an anonymous referee that the R command glm() does not 
directly calculate the inverse of the matrix �′W� in (A.4), but, instead, solves a 
linear system for � t+1 . The motivation for this approach is that in high-dimensional 
covariate spaces or in the situation of multiple categorical variables with many 
labels (implemented by dummy coding), the matrix �′W� may be close to singular 
and, henceforth, inversion of this matrix may lead to unstable results.

Standard errors are obtained from the inverse of Fisher’s information matrix

where ∇2
�
 denotes the Hessian w.r.t. � . The IRLS algorithm replaces the inverse 

Fisher’s information matrix I(�)−1 = (��W�)−1 in the scoring updates by the 
inverse of the observed information matrix

B Motorcycle data example

We start with a descriptive and exploratory analysis of the Swedish motorcycle data 
of Listing 1. We have n = 62�036 insurance policies with positive exposures wi > 0 . 
The empirical claim frequency is �̄� =

∑n

i=1
Ni∕

∑n

i=1
wi = 1.05% , and the average 

claim size is 𝜁 =
∑n

i=1

∑Ni

j=1
Zi,j∕

∑n

i=1
Ni = 24�641 Swedish crowns SEK.

Figure  7 shows a boxplot over all exposures wi and the claim counts Ni on all 
insurance policies. We note that insurance claims are rare events for this product, 
because the claim frequency is only �̄� = 1.05%.

Figures 8 and 9 give the marginal total exposures (split by gender), the marginal 
claim frequencies and the marginal average claim amounts for the covariate compo-
nents Age, Zone, McClass, McAge and Bonus. The first observation is that we 
have a very imbalanced portfolio between genders, only 11% of the total exposure 
is coming from females. The empirical claim frequency of females is 0.86% and the 
one of males is 1.08%. We note that the female claim frequency comes from (only) 
61 claims (based on an exposure of female of 7’094 accounting years, versus 57’679 
for male). Therefore, it is difficult to analyze females separately, and all marginal 
claim frequencies and claim sizes in Figs.  8 and 9 (middle and rhs) are analyzed 

(A.3)∇��(�) = 0 ⇔ ��WR = 0,

(A.4)� t ↦ � t+1 =
(
��W�

)−1
��W(R + g(�)),

I(�) = 𝔼

[
∇��(�)

(
∇��(�)

)�]
= −𝔼

[
∇2

�
�(�)

]
= ��W� ∈ ℝ

(d+1)×(d+1),
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jointly for both genders. Average claim sizes are 18’237 SEK and 25’270 SEK for 
female and male, respectively.

The empirical marginal frequencies in Figs. 8 and 9 (middle) are complemented 
with confidence bounds of two standard deviations (blue dotted lines) and the empir-
ical overall frequency �̄� = 1.05% (orange color). From the plots we conclude that we 
should keep the explanatory variables Age, Zone, McClass and McAge, but the 
variable Bonus does not seem to have any predictive power. At the first sight, this 
seems surprising because the bonus-malus level encodes the past claims history. The 
reason that the bonus-malus level is not needed for our claims is that we consider 
comprehensive insurance for motorcycles covering loss or damage of motorcycles 
other than collision (for instance, caused by theft, fire or vandalism), and the bonus-
malus level encodes collision claims. The situation for average claim amounts is a 
bit more difficult to understand, but we make a similar conclusion, namely, that we 
can drop the covariate Bonus. Moreover, we merge Zones 5–7 because of small 
exposures and similar behavior.

Figure  10 shows the correlations between the covariates: (lhs) correlations 
between continuous covariates, (plots rhs), dependence between continuous covari-
ates and the categorical Zone covariate. We have some dependence, for instance, 
in Zone 1 (three largest Swedish cities) motorcycles are more light (McClass) 
and less old. Older people drive less heavy motorcycles that are more old, and older 
motorcycles are less heavy.

Figure 11 gives the empirical density, empirical distribution and log-log plot of 
average claim amounts Z̄i . From the log-log plot we conclude that the average claim 
amounts are not heavy tailed, which does not reject the use of gamma claim size 
distributions at that stage.
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(rhs) histogram of the number of observed claims Ni per policy.
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Fig. 8  (top, middle and bottom rows) Age, Zone, McClass: (lhs) histogram of exposures (split by gen-
der), (middle) observed claim frequency, (rhs) boxplot of observed average claim amounts Z̄i of policies 
with Ni > 0 (on log-scale)
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Fig. 9  (top and bottom rows) McAge, Bonus: (lhs) histogram of exposures (split by gender), (middle) 
observed claim frequency, (rhs) boxplot of observed average claim amounts Z̄i of policies with Ni > 0 
(on log-scale)
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Fig. 11  (lhs) Empirical density (middle) empirical distribution and (rhs) log-log plot of average claim 
amounts Z̄i of policies with Ni > 0
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C R code

Listing 2: R code for Tweedie’s CP neural network model.
1 library(keras)

2 #

3 network.Tweedie <- function(seed){

4 set.seed(seed)

5 use_session_with_seed(seed)

6 design <- layer_input(shape=c(8), dtype=’float32 ’, name=’design ’)

7 #

8 output = design %>%

9 layer_dense(units=20, activation=’tanh ’, name=’hidden1 ’) %>%

10 layer_dense(units=15, activation=’tanh ’, name=’hidden2 ’) %>%

11 layer_dense(units=10, activation=’tanh ’, name=’hidden3 ’) %>%

12 layer_dense(units=2, activation=’exponential ’, name=’output ’)

13 #

14 model <- keras_model(inputs=list(design), outputs=c(output ))

15 model

16 }

17 #

18 p <- 1.4

19 Tweedie_loss <- function(y_true , y_pred)

20 - k_mean( y_true [ ,3]*(( y_true [,1]* y_pred [,1]^(1-p)/(1-p)-

21 y_pred [,1]^(2-p)/(2-p))/ y_pred[,2]-y_true [,2]*log(y_pred [ ,2])/(p-1)) )}

22 #

23 model <- network.Tweedie(seed =200)

24 model %>% compile(loss = Tweedie_loss , optimizer = ’nadam ’)

25 #

26 XX <- as.matrix(dat[,c("Age","Gender","Zone2","Zone3","Zone4","Zone5","McClass","McAge ")])

27 YY <- as.matrix(cbind(dat$ClaimCosts/dat$Exposure ,dat$ClaimNb/dat$Exposure ,dat$Exposure ))

28 #

29 fit <- model %>% fit(list(XX), YY , validation_split =0.2, batch_size =5000 , epochs =200)

30 dat$predict <- model %>% predict(list(XX))
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