Búsqueda

Modeling period effects in multi-population mortality models : applications to Solvency II

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20140017225</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20140603162416.0</controlfield>
    <controlfield tag="008">140519e20140203esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="245" ind1="0" ind2="0">
      <subfield code="a">Modeling period effects in multi-population mortality models</subfield>
      <subfield code="b">: applications to Solvency II</subfield>
      <subfield code="c">Rui Zhou...[et.al]</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Recently Cairns et al. introduced a general framework for modeling the dynamics of mortality rates of two related populations simultaneously. Their method ensures that the resulting forecasts do not diverge over the long run by modeling the difference in the stochastic factors between the two populations with a mean-reverting autoregressive process. In this article, we investigate how the modeling of the stochastic factors may be improved by using a vector error correction model. This extension is highly intuitive, allowing us to visualize the cross-correlations and the long-term equilibrium relation between the two populations. Another key benefit is that this extension does not require the user to assume which one of the two populations is dominant. This benefit is important because, as we demonstrate, it is not always easy to identify the dominant population, even if one population is much larger than the other. We illustrate our proposed extension with data from a pair of populations and apply it to the calculation of Solvency II risk capital.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080592059</subfield>
      <subfield code="a">Modelos predictivos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080555306</subfield>
      <subfield code="a">Mortalidad</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080564254</subfield>
      <subfield code="a">Solvencia II</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080586447</subfield>
      <subfield code="a">Modelo estocástico</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="700" ind1=" " ind2=" ">
      <subfield code="0">MAPA20110028855</subfield>
      <subfield code="a">Zhou, Rui</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000239</subfield>
      <subfield code="t">North American actuarial journal</subfield>
      <subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
      <subfield code="x">1092-0277</subfield>
      <subfield code="g">03/02/2014 Tomo 18 Número 1 - 2014 , p. 150-167</subfield>
    </datafield>
  </record>
</collection>