Búsqueda

Learning and adaptation of strategies in automated negotiations between context-aware agents

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20240013226</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20240829095647.0</controlfield>
    <controlfield tag="008">240829e20240619esp|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">922.134</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20240020774</subfield>
      <subfield code="a">Kröhling, Dan Ezequiel </subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Learning and adaptation of strategies in automated negotiations between context-aware agents</subfield>
      <subfield code="c"> By Dan Ezequiel Kröhling, Omar J. A. Chiotti and Ernesto C. Martínez</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">This work presents the hypothesis that guided the research efforts and a summary of the contributions of the doctoral thesis '`Aprendizaje y adaptación de estrategias para negociación automatizada entre agentes conscientes del contexto'. Succinctly, the thesis focuses on agents for automated bilateral negotiations that make use of the context as a key source of information to learn and adapt negotiation strategies in two levels of temporal abstraction. At the highest level, agents employ reinforcement learning to select strategies according to contextual circumstances. At the lowest level, agents use Gaussian Processes and artificial Theory of Mind to model their opponents and adapt their strategies. Agents are then tested in two Peer-to-Peer markets comprising an Eco-Industrial Park and a Smart Grid. The results highlight the significance for the automation of bilateral negotiations of incorporating the context as an informative source</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080568009</subfield>
      <subfield code="a">Automatización</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080611200</subfield>
      <subfield code="a">Inteligencia artificial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080559694</subfield>
      <subfield code="a">Negociación</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20240020781</subfield>
      <subfield code="a">Chiotti, Omar J. A.</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20240020798</subfield>
      <subfield code="a">Martínez, Ernesto C. </subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20200034445</subfield>
      <subfield code="g">19/06/2024 Volumen 27 Número 73 - junio 2024 , p. 159-162</subfield>
      <subfield code="x">1988-3064</subfield>
      <subfield code="t">Revista Iberoamericana de Inteligencia Artificial</subfield>
      <subfield code="d"> : IBERAMIA, Sociedad Iberoamericana de Inteligencia Artificial , 2018-</subfield>
    </datafield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="u">https://journal.iberamia.org/index.php/intartif/article/view/1305</subfield>
    </datafield>
  </record>
</collection>